Maurits W Haverkort

Learn More
When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum(More)
I present a tractable theory for the resonant inelastic x-ray scattering (RIXS) of magnons. The low-energy transition operator is written as a product of local spin operators and fundamental x-ray absorption spectral functions. This leads to simple selection rules. The scattering cross section linear (quadratic) in spin operators is proportional to the(More)
We study the manipulation of the spin polarization of photoemitted electrons in Bi2Se3 by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the photoelectron spin-polarization. We demonstrate the ± 100% reversal of a single component of the measured spin-polarization vector upon the rotation of light(More)
Spin-orbit coupling has been conjectured to play a key role in the low-energy electronic structure of Sr2RuO4. By using circularly polarized light combined with spin- and angle-resolved photoemission spectroscopy, we directly measure the value of the effective spin-orbit coupling to be 130±30  meV. This is even larger than theoretically predicted and(More)
Using soft-x-ray absorption spectroscopy at the Co L(2,3) and O K edges, we demonstrate that the Co3+ ions with the CoO5 pyramidal coordination in the layered Sr2CoO3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites and(More)
Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena(More)
The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping, and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre-K edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by(More)
Sr3(Ru(1-x)Mnx)2O7, in which 4d-Ru is substituted by the more localized 3d-Mn, is studied by x-ray dichroism and spin-resolved density functional theory. We find that Mn impurities do not exhibit the same 4+ valence of Ru, but act as 3+ acceptors; the extra eg electron occupies the in-plane 3d(x2-y2) orbital instead of the expected out-of-plane 3d(3z2-r2).(More)
The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. K 4 Cu 4 OCl 10 , ranging from early to late transition-metal ions,(More)
  • 1