Learn More
Bimolecular membranes are formed from two lipid monolayers at an air-water interface by the apposition of their hydrocarbon chains when an aperture in a Teflon partition separating two aqueous phases is lowered through the interface. Formation of the membrane is monitored by an increase of the electrical capacity, as measured with a voltage clamp.(More)
Generalized epilepsy with febrile seizures plus (GEFS+), a clinical subset of febrile seizures (FS), is characterized by frequent episodes beyond 6 years of age (FS+) and various types of subsequent epilepsy. Mutations in beta1 and alpha(I)-subunit genes of voltage-gated Na(+) channels have been associated with GEFS+1 and 2, respectively. Here, we report a(More)
The structures of functional peptides corresponding to the predicted channel-lining M2 segments of the nicotinic acetylcholine receptor (AChR) and of a glutamate receptor of the NMDA subtype (NMDAR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. Both M2 segments form straight(More)
Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an(More)
The human immunodeficiency virus type 1 (HIV-1) Vpu protein is an integral membrane phosphoprotein that induces CD4 degradation in the endoplasmic reticulum and enhances virus release from the cell surface. CD4 degradation is specific, requires phosphorylation of Vpu, and involves the interaction between Vpu and the CD4 cytoplasmic domain. In contrast,(More)
Scn8a encodes an abundant, widely distributed voltage-gated sodium channel found throughout the central and peripheral nervous systems. Mice with different mutant alleles of Scn8a provide models of the movement disorders ataxia, dystonia, tremor and progressive paralysis. We previously reported that the phenotype of the hypomorphic allele of Scn8a, medJ, is(More)
Glutamate receptor channels of the NMDA-type (N-methyl-D-aspartate) and non-NMDA-type (GluR) differ in their pore properties. The N-site in the M2 transmembrane segment of NMDA receptors (NMDAR), or the corresponding Q/R-site in GluRs, is a pivotal structural determinant of their permeation and blockade characteristics. Substitutions at a second site in M2,(More)
Excitotoxic neuronal death, associated with neurodegenerative disorders and hypoxic insults, results from excessive exposure to excitatory neurotransmitters. Glutamate neurotoxicity is triggered primarily by massive Ca2+ influx arising from overstimulation of the NMDA subtype of glutamate receptors. The underlying mechanisms, however, remain elusive. We(More)
Excitotoxic neuronal death, associated with neurodegeneration and stroke, is triggered primarily by massive Ca2+ influx arising from overactivation of glutamate receptor channels of the N-methyl-D-aspartate (NMDA) subtype. To search for channel blockers, synthetic combinatorial libraries were assayed for block of agonist-evoked currents by the human(More)
Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of(More)