Mauricio La Rota

Learn More
Earlier comparative maps between the genomes of rice (Oryza sativa L.), barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) were linkage maps based on cDNA-RFLP markers. The low number of polymorphic RFLP markers has limited the development of dense genetic maps in wheat and the number of available anchor points in comparative maps. Higher density(More)
The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to crop species has revolutionized molecular genetics and crop improvement strategies. This study compared 4485 expressed sequence tags (ESTs) that were physically mapped in wheat chromosome bins, to the public rice genome sequence(More)
Genes detected by wheat expressed sequence tags (ESTs) were mapped into chromosome bins delineated by breakpoints of 159 overlapping deletions. These data were used to assess the organizational and evolutionary aspects of wheat genomes. Relative gene density and recombination rate increased with the relative distance of a bin from the centromere.(More)
Loci detected by Southern blot hybridization of 3,977 expressed sequence tag unigenes were mapped into 159 chromosome bins delineated by breakpoints of a series of overlapping deletions. These data were used to assess synteny levels along homoeologous chromosomes of the wheat A, B, and D genomes, in relation to both bin position on the centromere-telomere(More)
Alternaria brassicicola is an important, necrotrophic fungal pathogen that causes black spot disease on Brassicas. In order to study pathogenicity mechanisms, gene deletion mutants were generated for 21 putative regulatory genes including kinases and transcription factors subjectively selected from the annotated A. brassicicola genome. Except for Ste12, the(More)
SUMMARY Alternaria brassicicola is a necrotrophic pathogen causing black spot disease on virtually all cultivated Brassica crops worldwide. In many plant pathosystems fungal secondary metabolites derived from non-ribosomal peptide synthetases (NPSs) are phytotoxic virulence factors or are antibiotics thought to be important for niche competition with other(More)
  • 1