Maurice Raymond Yeadon

Learn More
A mathematical inertia model which permits the determination of personalized segmental inertia parameter values from anthropometric measurements is described. The human body is modelled using 40 geometric solids which are specified by 95 anthropometric measurements. A 'stadium' solid is introduced for modelling the torso segments using perimeter and width(More)
The selection of an appropriate and/or standardized method for representing 3-D joint attitude and motion is a topic of popular debate in the field of biomechanics. The joint coordinate system (JCS) is one method that has seen considerable use in the literature. The JCS consists of an axis fixed in the proximal segment, an axis fixed in the distal segment,(More)
A computer simulation model of human airborne movement is described. The body is modelled as 11 rigid linked segments with 17 degrees of freedom which are chosen with a view to modelling twisting somersaults. The accuracy of the model is evaluated by comparing the simulation values of the angles describing somersault, tilt and twist with the corresponding(More)
Quantitative mechanical analyses of human movement require the time histories of the angles which specify body configuration and orientation. When these angles are obtained from a filmed performance they may be used to evaluate the accuracy of a simulation model. This paper presents a method of determining orientation angles and their rates of change from(More)
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee(More)
A method is presented for determining the angular momentum of the human body about its mass centre for general three-dimensional movements. The body is modelled as an 11 segment link system with 17 rotational degrees of freedom and the angular momentum of the body is derived as a sum of 12 terms, each of which is a vector function of just one angular(More)
To reduce the effects of skin movement artefacts and apparent joint dislocations in the kinematics of whole body movement derived from marker locations, global optimisation procedures with a chain model have been developed. These procedures can also be used to reduce the number of markers when self-occlusions are hard to avoid. This paper assesses the(More)
Linear regression equations are commonly used in conjunction with experimental data to provide linear relationships between quantities which are dimensionally distinct. In many cases theoretical relationships between such quantities are known and can be used as a basis for non-linear regression equations. This study compares linear and non-linear approaches(More)
Strength, or maximum joint torque, is a fundamental factor governing human movement, and is regularly assessed for clinical and rehabilitative purposes as well as for research into human performance. This study aimed to identify the most appropriate protocol for fitting a maximum voluntary torque function to experimental joint torque data. Three(More)
Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining(More)