Maurice Jansen

Learn More
Families of oxysterol-binding protein (ORP) homologues are present in eukaryotes from yeast to man. Their hallmark feature is a characteristic ligand binding domain that, for several family members, has been shown to accommodate different oxysterols and/or cholesterol. ORPs of the "long" subtype contain targeting determinants for the endoplasmic reticulum(More)
Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here, we provide evidence that the biophysical and functional(More)
To study the principles of endocytic lipid trafficking, we introduced pyrene sphingomyelins (PyrSMs) with varying acyl chain lengths and domain partitioning properties into human fibroblasts or HeLa cells. We found that a long-chain, ordered-domain preferring PyrSM was targeted Hrs and Tsg101 dependently to late endosomal compartments and recycled to the(More)
In this study, we investigated the mechanisms of sterol transport from the plasma membrane (PM) to the endoplasmic reticulum (ER) and lipid droplets (LDs) in HeLa cells. By overexpressing all mammalian oxysterol-binding protein-related proteins (ORPs), we found that especially ORP1S and ORP2 enhanced PM-to-LD sterol transport. This reflected the stimulation(More)
Caveolin-1 binds cholesterol and caveola formation involves caveolin-1 oligomerization and cholesterol association. The role of cholesterol in caveolae has so far been addressed by methods that compromise membrane integrity and abolish caveolar invaginations. To study the importance of sterol specificity for the structure and function of caveolae, we(More)
The analysis of fluorescence recovery after photobleaching (FRAP) data is complicated by the measurement noise, inhomogeneous fluorescence distribution, and image movement during experiment. Conventionally, these issues are tackled by data preprocessing and averaging, which causes loss of quantitative properties. In this study, we present a method which(More)
Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR– and F-BAR–domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR–domain proteins induce negative(More)
The brain is the most cholesterol-enriched tissue in the body. During brain development, desmosterol, an immediate precursor of cholesterol, transiently accumulates up to 30% of total brain sterols. This massive desmosterol deposition appears to be present in all mammalian species reported so far, including humans, but how it is achieved is not well(More)
Cholesterol is the main but not the only sterol in cell membranes of higher eukaryotes. Currently, there is an increasing interest toward structurally different sterols, because their membrane partitioning, trafficking, and metabolic properties may differ considerably from those of cholesterol. There is also growing information on specific sterol-protein(More)