Maurice G. C. Bosman

Learn More
Emerging new technologies like distributed generation, distributed storage, and demand-side load management will change the way we consume and produce energy. These techniques enable the possibility to reduce the greenhouse effect and improve grid stability by optimizing energy streams. By smartly applying future energy production, consumption, and storage(More)
Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of domestic technologies have been developed to improve this efficiency. These technologies on their own already improve the efficiency, but more can be gained by a combined management. Multiple optimization(More)
e electricity supply chain is changing, due to increasing awareness for sustainability and an improved energy e›ciency. e traditional infrastructure where demand is supplied by centralized generation is subject to a transition towards a Smart Grid. In this Smart Grid, sustainable generation from renewable sources is accompanied by controllable distributed(More)
Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies have been developed to improve this efficiency. Next to large scale technologies such as windturbine parks, domestic technologies are developed. These domestic technologies can be divided in 1)(More)
Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies and optimization methodologies were developed to increase the efficiency, maintain the grid stability and support large scale introduction of renewable sources. In previous work, we showed the(More)
The awareness of the greenhousegas effect and rising energy prices lead to initiatives to improve energy efficiency. These initiatives range from micro-generation, energy storage and efficient appliances to controllers with optimization objectives. Although these technologies are promising, their introduction may rise further questions. The implementation(More)
Most residential-used electricity is nowadays generated at inefficient central power plants consuming environmental unfriendly resources like coal or natural gas. However, a trend towards distributed generation, distributed storage and demand side load management is seen to improve the energy efficiency. In order to analyze the impact and requirements of(More)
This paper describes a planning problem, arising in the energy supply chain, that deals with the planning of the production runs of micro combined heat and power (microCHP) appliances installed in houses, cooperating in a fleet. Two types of this problem are described. The first one is the Single House Planning Problem (SHPP), where the focus is on(More)
One of the options to increase the energy efficiency of current electricity network is the use of a Virtual Power Plant. By using multiple small (micro)generators distributed over the country, electricity can be produced more efficiently since these small generators are more efficient and located where the energy is needed. In this paper we focus on micro(More)