Learn More
This paper reviews the development of the current 'supra-long' pine chronology for northern Finnish Lapland. In the forest-tundra ecotone region of northern Finnish Lapland over 250 samples from living Scots pines (Pinus sylvestris L.) and over 1700 samples of subfossil pines have been collected for dendrochronological studies. In addition, over 1400(More)
The drop in temperature following large volcanic eruptions has been identified as an important component of natural climate variability. However, due to the limited number of large eruptions that occurred during the period of instrumental observations, the precise amplitude of post-volcanic cooling is not well constrained. Here we present new evidence on(More)
Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other "Old World" climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have(More)
Tree-ring chronologies are important indicators of pre-instrumental, natural climate variability. Some of the longest chronologies are from northern Fennoscandia, where ring width measurement series from living trees are combined with series from sub-fossil trees, preserved in shallow lakes, to form millennial-length records. We here assess the recent ends(More)
Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern(More)
Radial growth was examined in two Scots pine stands that were seeded during the 1920s and 1930s due to reforestation and afforestation activity on the timberline of northern Finnish Lapland. Tree-rings of seeded pines were calibrated against the instrumental records of local weather and large-scale atmospheric patterns and further compared to pines of(More)
Geochronological data of the conifer tree rings in a region sensitive to climatic effects of explosive eruptions were analysed for sudden growth reductions in association with extraordinarily cool reconstructed summer temperatures since 5500 B.C. Tree-ring data came from the stems of living trees and subfossil tree remains collected as increment cores and(More)
  • 1