Maureen B. Quin

Learn More
A commonly used strategy by microorganisms to survive multiple stresses involves a signal transduction cascade that increases the expression of stress-responsive genes. Stress signals can be integrated by a multiprotein signaling hub that responds to various signals to effect a single outcome. We obtained a medium-resolution cryo-electron microscopy(More)
Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria(More)
The secondary metabolome of Basidiomycota represents a largely uncharacterized source of pharmaceutically relevant natural products. Terpenoids are the primary class of bioactive compounds isolated from mushrooms. The Jack O'Lantern mushroom Omphalotus olearius was identified 50 years ago as a prolific producer of anticancer illudin sesquiterpenoids;(More)
Spatial organization via encapsulation of enzymes within recombinant nanocompartments may increase efficiency in multienzyme cascades. Previously, we reported the encapsulation of single cargo proteins within nanocompartments in the heterologous host Escherichia coli. This was achieved by coexpression of the Salmonella enterica LT2 ethanolamine utilization(More)
The stressosome complex regulates downstream effectors in response to environmental signals. In Bacillus subtilis, it activates the alternative sigma factor σ(B), leading to the upregulation of the general stress regulon. Herein, we characterize a stressosome-regulated biochemical pathway in Moorella thermoacetica. We show that the presumed sensor, MtR, and(More)
The Basidiomycota fungi represent a diverse source of natural products, particularly the sesquiterpenoids. Recently, genome sequencing, genome mining, and the subsequent discovery of a suite of sesquiterpene synthases in Omphalotus olearius was described. A predictive framework was developed to facilitate the discovery of sesquiterpene synthases in(More)
Enzymes are increasingly being used in an industrial setting as a cheap and environmentally-friendly alternative to chemical catalysts. In order to produce the ideal biocatalyst, natural enzymes often require optimization to increase their catalytic efficiencies and specificities under a particular range of reaction conditions. A number of enzyme(More)
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and(More)
Bacterial microcompartments (BMCs) are protein-based polyhedral organelles which serve to encapsulate and organize enzymes involved in key metabolic pathways. The sequestration of these pathways not only improves the overall reaction efficiency; it can also harbor toxic or volatile pathway intermediates, which would otherwise be detrimental to the cell.(More)
Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression(More)