Maureen A . Powers

Learn More
Xenopus egg extracts provide a powerful system for in vitro reconstitution of nuclei and analysis of nuclear transport. Such cell-free extracts contain three major N-acetylglucosaminylated proteins: p200, p97, and p60. Both p200 and p60 have been found to be components of the nuclear pore. Here, the role of p97 has been investigated. Xenopus p97 was(More)
Nucleoporin 98 (Nup98), a glycine-leucine-phenylalanine-glycine (GLFG) amino acid repeat-containing nucleoporin, plays a critical part in nuclear trafficking. Injection of antibodies to Nup98 into the nucleus blocks the export of most RNAs. Nup98 contains binding sites for several transport factors; however, the mechanism by which this nucleoporin functions(More)
Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin(More)
The 97-kD O-linked glycoprotein, Nup98, is a component of the Xenopus laevis nuclear pore complex and the only vertebrate GLFG nucleoporin identified (Powers, M.A., C. Macauley, F. Masiarz, and D.J. Forbes. 1995. J. Cell Biol. 128:721-736). We have investigated possible roles of xNup98 in the nucleocytoplasmic transport of proteins and RNAs by analyzing the(More)
Most nucleocytoplasmic traffic through the nuclear pore complex is mediated by soluble receptors of the importin/exportin or karyopherin family. mRNA export is unique in that no receptor of this family has been implicated in trafficking of the bulk of mRNAs. Instead, many diverse proteins have been linked to mRNA export, but an all-encompassing model(More)
Nup98 is a component of the nuclear pore that plays its primary role in the export of RNAs. Nup98 is expressed in two forms, derived from alternate mRNA splicing. Both forms are processed into two peptides through autoproteolysis mediated by the C-terminal domain of hNup98. The three-dimensional structure of the C-terminal domain reveals a novel protein(More)
The vertebrate nuclear pore is an enormous structure that spans the double membrane of the nuclear envelope. In yeast, most nucleoporins are found symmetrically on both the nuclear and cytoplasmic sides of the structure. However, in vertebrates most nucleoporins have been localized exclusively to one side of the nuclear pore. Herein, we show, by(More)
Despite the apparent overall structural stability of the nuclear pore complex during interphase, at least two nucleoporins have been shown to move dynamically on and off the pore. It is not yet certain what contribution nucleoporin mobility makes to the process of nuclear transport or how such mobility is regulated. Previously, we showed that Nup98(More)
Nucleocytoplasmic trafficking of macromolecules, a highly specific and tightly regulated process, occurs exclusively through the nuclear pore complex. This immense structure is assembled from approximately 30 proteins, termed nucleoporins. Here we discuss the four nucleoporins that have been linked to cancers, either through elevated expression in tumors(More)
Nuclear pore complexes (NPCs) facilitate macromolecular exchange between the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of approximately 30 different proteins (nucleoporins), of which around one third contain phenylalanine-glycine (FG)-repeat domains that are thought to mediate the main interaction between the NPC and soluble(More)