Learn More
The cardiac type 2 ryanodine receptor (RYR2) is activated by Ca2+-induced Ca2+ release (CICR). The inherent positive feedback of CICR is well controlled in cells, but the nature of this control is debated. Here, we explore how the Ca2+ flux (lumen-to-cytosol) carried by an open RYR2 channel influences its own cytosolic Ca2+ regulatory sites as well as those(More)
Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated(More)
Malignant hyperthermia (MH) susceptibility is a genetic disorder of skeletal muscle associated with mutations in the ryanodine receptor isoform 1 (RyR1) of sarcoplasmic reticulum (SR). In MH-susceptible skeletal fibers, RyR1-mediated Ca(2+) release is highly sensitive to activation by the volatile anesthetic halothane. Indeed, studies with isolated RyR1(More)
Diaz-Sylvester PL, Porta M, Copello JA. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca , Mg , and ATP. Am J Physiol Cell Physiol 294: C1103–C1112, 2008. First published February 27, 2008; doi:10.1152/ajpcell.90642.2007.—Malignant hyperthermia (MH) susceptibility is a genetic disorder of skeletal muscle associated with(More)
Human amnion was mounted, immediately after delivery, as a diaphragm between two lucite chambers and the net transepithelial water movement (Jw) was recorded minute by minute. When Jw was plotted against the applied transepithelial hydrostatic pressure (fetal side positive), in the absence of any other gradient, a linear relationship was observed (Phydr =(More)
Ca(2+)-entry via L-type Ca(2+) channels (DHPR) is known to trigger ryanodine receptor (RyR)-mediated Ca(2+)-release from sarcoplasmic reticulum (SR). The mechanism that terminates SR Ca(2+) release is still unknown. Previous reports showed evidence of Ca(2+)-entry independent inhibition of Ca(2+) sparks by DHPR in cardiomyocytes. A peptide from the DHPR(More)
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All(More)
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular(More)
Coupled gating (synchronous openings and closures) of groups of skeletal muscle ryanodine receptors (RyR1), which mimics RyR1-mediated Ca(2+) release underlying Ca(2+) sparks, was first described by Marx et al. (Marx SO, Ondrias K, Marks AR. Science 281: 818-821, 1998). The nature of the RyR1-RyR1 interactions for coupled gating still needs to be(More)
Trifluoperazine (TFP), a phenothiazine, is a commonly used antipsychotic drug whose therapeutic effects are attributed to its central anti-adrenergic and anti-dopaminergic actions. However, TFP is also a calmodulin (CaM) antagonist and alters the Ca2+ binding properties of calsequestrin (CSQ). The CaM and CSQ proteins are known modulators of sarcoplasmic(More)