Maura Calvani

Learn More
The identification of small molecules that inhibit the sequence-specific binding of transcription factors to DNA is an attractive approach for regulation of gene expression. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that controls genes involved in glycolysis, angiogenesis, migration, and invasion, all of which are important for tumor(More)
The recent approval of bevacizumab (Avastin), a humanized anti-vascular endothelial growth factor (VEGF) monoclonal antibody, in combination with chemotherapy for the treatment of patients with metastatic colorectal cancer, has provided proof of principle of the efficacy of antiangiogenic strategies for cancer therapy. The activity of bevacizumab is(More)
Hypoxia is a major pathophysiological condition for the induction of angiogenesis, which is a crucial aspect of growth in solid tumors. In mammalian cells, the transcriptional response to oxygen deprivation is largely mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimer composed of HIF-1alpha and HIF-1beta subunits. However, the response of(More)
Hypoxia is a major pathophysiological condition for the induction of angiogenesis, which is a crucial aspect of growth in solid tumors. In mammalian cells, the transcriptional response to oxygen deprivation is largely mediated by hypoxiainducible factor 1 (HIF-1), a heterodimer composed of HIF-1 and HIF-1 subunits. However, the response of endothelial cells(More)
We studied the regulation of the kynurenine pathway of tryptophan metabolism in human monocyte-derived macrophages (MDM) with the aim of evaluating macrophage involvement in inflammatory neurological disorders. Cultured MDM metabolized tryptophan and released kynurenine metabolites, including the excitotoxin quinolinic acid (QUIN). Lipopolysaccharides (LPS)(More)
The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits(More)
  • 1