Maud Rimbault

Learn More
Dogs and rats have a highly developed capability to detect and identify odorant molecules, even at minute concentrations. Previous analyses have shown that the olfactory receptors (ORs) that specifically bind odorant molecules are encoded by the largest gene family sequenced in mammals so far. We identified five amino acid patterns characteristic of ORs in(More)
Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large(More)
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed(More)
Olfactory receptors, to which odorant molecules specifically bind, are encoded by the largest gene family yet identified in the mammalian genome. We investigated additional polymorphism due to the possible existence of multiple alleles dispersed in different dog breeds by carrying out a survey of the sequences of 16 olfactory receptor genes in a sample of(More)
The worldwide dog population is fragmented into >350 domestic breeds. Breeds share a common ancestor, the gray wolf. The intense artificial selection imposed by humans to develop breeds with particular behaviors and phenotypic traits has occurred primarily in the last 200-300 years. As a result, the number of genes controlling the major differences in body(More)
Evolution has resulted in large repertoires of olfactory receptor (OR) genes, forming the largest gene families in mammalian genomes. Knowledge of the genetic diversity of olfactory receptors is essential if we are to understand the differences in olfactory sensory capability between individuals. Canine breeds constitute an attractive model system for such(More)
BACKGROUND Advantages offered by canine population substructure, combined with clinical presentations similar to human disorders, makes the dog an attractive system for studies of cancer genetics. Cancers that have been difficult to study in human families or populations are of particular interest. Histiocytic sarcoma is a rare and poorly understood(More)
Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which(More)
Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine(More)
Olfaction is a particularly important sense in the dog. Humans selected for this capacity during the domestication process, and selection has continued to be employed to enhance this ability. In this review we first describe the different olfactory systems that exist and the different odorant receptors that are expressed in those systems. We then focus on(More)