Learn More
BACKGROUND The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context. METHODS(More)
Excised anterior mitral leaflets exhibit anisotropic, non-linear material behavior with pre-transitional stiffness ranging from 0.06 to 0.09 N/mm(2) and post-transitional stiffness from 2 to 9 N/mm(2). We used inverse finite element (FE) analysis to test, for the first time, whether the anterior mitral leaflet (AML), in vivo, exhibits similar non-linear(More)
The anterior leaflet of the mitral valve (MV), viewed traditionally as a passive membrane, is shown to be a highly active structure in the beating heart. Two types of leaflet contractile activity are demonstrated: 1) a brief twitch at the beginning of each beat (reflecting contraction of myocytes in the leaflet in communication with and excited by left(More)
The turbulent blood flow through an aortic coarctation in a 63-year old female patient was studied experimentally using magnetic resonance imaging (MRI), and numerically using computational fluid dynamics (CFD), before and after catheter intervention. Turbulent kinetic energy (TKE) was computed in the numerical model using large eddy simulation and compared(More)
Left atrial muscle extends into the proximal third of the mitral valve (MV) anterior leaflet and transient tensing of this muscle has been proposed as a mechanism aiding valve closure. If such tensing occurs, regional stiffness in the proximal anterior mitral leaflet will be greater during isovolumic contraction (IVC) than isovolumic relaxation (IVR) and(More)
Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset(More)
This article presents a novel nonreflective boundary condition for the free surface incompressible Euler and Navier-Stokes equations. Boundaries of this type are very useful when, for example, simulating water flow around a ship moving over a wide ocean. Normally waves generated by the ship will reflect off of the boundaries of the simulation domain and as(More)