Mattia Donà

Learn More
BACKGROUND AND AIMS The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological(More)
Rotaviruses are important human pathogens with a triple-layered icosahedral capsid. The major capsid protein VP6 is shown here to self-assemble into spherical or helical particles mainly depending upon pH. Assembly is inhibited either by low pH (<3.0) or by a high concentration (>100 mM) of divalent cations (Ca(2+) and Zn(2+)). The structures of two types(More)
BACKGROUND AND AIMS Seed longevity, a fundamental plant trait for ex situ conservation and persistence in the soil of many species, varies across populations and generations that experience different climates. This study investigates the extent to which differences in seed longevity are due to genetic differences and/or modified by adaptive responses to(More)
Farmers and growers are constantly looking for high quality seeds able to ensure uniform field establishment and increased production. Seed priming is used to induce pre-germinative metabolism and then enhance germination efficiency and crop yields. It has been hypothesized that priming treatments might also improve stress tolerance in germinating seeds,(More)
An intron-spliced hairpin RNA approach was used for the targeted silencing of the MtTdp1α gene encoding the αisoform of tyrosyl-DNA phosphodiesterase 1 in Medicago truncatula Gaertn. Tyrosyl-DNA phosphodiesterase 1, involved in the repair of DNA topoisomerase I-mediated DNA damage, has been poorly investigated in plants. RNA-Seq analysis, carried out in the(More)
In animal cells, recent studies have emphasized the role played by DNA topoisomerase I (topo I) both as a cofactor of DNA repair complexes and/or as a damage sensor. All these functions are still unexplored in plant cells, where information concerning the relationships between DNA damage, PCD induction, and topo I are also limited. The main goal of this(More)
Crop productivity is strictly related to genome stability, an essential requisite for optimal plant growth/development. Genotoxic agents (e.g., chemical agents, radiations) can cause both chemical and structural damage to DNA. In some cases, they severely affect the integrity of plant genome by inducing base oxidation, which interferes with the basal(More)
No information is currently available in plants concerning the tyrosyl-DNA phosphodiesterase 2 (Tdp2) enzyme which in animals is involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signaling. Bioinformatic investigation revealed the occurrence in the plant kingdom of three distinct Tdp2 isoforms, named(More)
The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR) pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries(More)
Our study highlights the use of the DNA repair gene MtTdp2α as a tool for improving the plant response to heavy metal stress. Tyrosyl-DNA phosphodiesterase 2 (Tdp2), involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signalling in animal cells, is still poorly characterised in plants. The Medicago(More)