Mattia Bongini

Learn More
We address dynamical systems of agents driven by attraction and repulsion forces, modelling cohesion and collision avoidance. When the total energy, which is composed of a kinetic part and a geometrical part describing the balance between attraction and repulsion forces, is below a certain threshold, then it is known that the agents will converge to a(More)
For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming confidence. In this paper we present an instance of this general(More)
In this paper we are concerned with multiscale modeling, control, and simulation of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on crowds. We first introduce a new microscopic model characterized by an exploration phase and an evacuation phase. The main ingredients of the model are an alignment term,(More)
  • 1