Matti Annala

Learn More
Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro(More)
Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the(More)
Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3'-untranslated(More)
Insulin-like growth factor-binding protein 2 (IGFBP2) is increasingly recognized as a glioma oncogene, emerging as a target for therapeutic intervention. In this study, we used an integrative approach to characterizing the IGFBP2 network, combining transcriptional profiling of human glioma with validation in glial cells and the replication-competent ASLV(More)
Protein binding microarrays (PBM) are a high throughput technology used to characterize protein-DNA binding. The arrays measure a protein's affinity toward thousands of double-stranded DNA sequences at once, producing a comprehensive binding specificity catalog. We present a linear model for predicting the binding affinity of a protein toward DNA sequences(More)
Castration-resistant prostate cancers (CRPC) that arise after the failure of androgen-blocking therapies cause most of the deaths from prostate cancer, intensifying the need to fully understand CRPC pathophysiology. In this study, we characterized the transcriptomic differences between untreated prostate cancer and locally recurrent CRPC. Here, we report(More)
Genome-wide association studies have identified thousands of SNPs associated with predisposition to various diseases, including prostate cancer. However, the mechanistic roles of these SNPs remain poorly defined, particularly for noncoding polymorphisms. Here we find that the prostate cancer risk-associated SNP rs339331 at 6q22 lies within a functional(More)
Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b(More)
Importance The molecular landscape underpinning response to the androgen receptor (AR) antagonist enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC) is undefined. Consequently, there is an urgent need for practical biomarkers to guide therapy selection and elucidate resistance. Although tissue biopsies are impractical to(More)
BACKGROUND Recently, there has been increasing attention on the role of microRNAs (miRNAs) in cancer development. Several expression profiling studies have provided evidence of aberrant expression of miRNAs in prostate cancer and have highlighted the potential use of specific miRNA expression signatures as prognostic or predictive markers. Here we report an(More)