Learn More
Brain function requires precisely orchestrated connectivity between neurons. Establishment of these connections is believed to require signals secreted from outgrowing axons, followed by synapse formation between selected neurons. Deletion of a single protein, Munc18-1, in mice leads to a complete loss of neurotransmitter secretion from synaptic vesicles(More)
Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067(More)
Diacylglycerol (DAG) is a prominent endogenous modulator of synaptic transmission. Recent studies proposed two apparently incompatible pathways, via protein kinase C (PKC) and via Munc13. Here we show how these two pathways converge. First, we confirm that DAG analogs indeed continue to potentiate transmission after PKC inhibition (the Munc13 pathway), but(More)
During synaptic vesicle fusion, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) protein syntaxin-1 exhibits two conformations that both bind to Munc18-1: a "closed" conformation outside the SNARE complex and an "open" conformation in the SNARE complex. Although SNARE complexes containing open syntaxin-1 and Munc18-1 are(More)
Synaptic vesicle fusion in brain synapses occurs in phases that are either tightly coupled to action potentials (synchronous), immediately following action potentials (asynchronous), or as stochastic events in the absence of action potentials (spontaneous). Synaptotagmin-1, -2, and -9 are vesicle-associated Ca2+ sensors for synchronous release. Here we(More)
Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central(More)
Major depressive disorder (MDD) is a common complex trait with enormous public health significance. As part of the Genetic Association Information Network initiative of the US Foundation for the National Institutes of Health, we conducted a genome-wide association study of 435 291 single nucleotide polymorphisms (SNPs) genotyped in 1738 MDD cases and 1802(More)
Secretory vesicles dock at the plasma membrane before Ca(2+) triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion.(More)
The inferior performance of DBA/2 mice when compared to C57BL/6 mice in hippocampus-dependent behavioral tasks including contextual fear conditioning has been attributed to impaired hippocampal function. However, DBA/2J mice have been reported to perform similarly or even better than C57BL/6J mice in the passive avoidance (PA) task that most likely also(More)