Matthias Wuttig

Learn More
Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an(More)
The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of(More)
Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to(More)
Phase-change materials are of tremendous technological importance ranging from optical data storage to electronic memories. Despite this interest, many fundamental properties of phase-change materials, such as the role of vacancies, remain poorly understood. 'GeSbTe'-based phase-change materials contain vacancy concentrations around 10% in their metastable(More)
We show tuning of the resonance frequency of aluminum nanoantennas via variation of the refractive index n of a layer of phase-change material. Three configurations have been considered, namely, with the antennas on top of, inside, and below the layer. Phase-change materials offer a huge index change upon the structural transition from the amorphous to the(More)
A switchable perfect absorber with multispectral thermal imaging capability is presented. Aluminum nanoantenna arrays above a germanium antimony telluride (GST) spacer layer and aluminum mirror provide efficient wavelength-tunable absorption in the mid-infrared. Utilizing the amorphous-to-crystalline phase transition in GST, this device offers switchable(More)
Iron-gallium alloys Fe(1-x)Ga(x) exhibit an exceptional increase in magnetostriction with gallium content. We present small-angle neutron scattering investigations on a Fe(0.81)Ga(0.19) single crystal. We uncover heterogeneities with an average spacing of 15 nm and with magnetizations distinct from the matrix. The moments in and around the heterogeneities(More)
Phase-change materials are characterized by a unique property portfolio well suited for data storage applications. Here, a first treasure map for phase-change materials is presented on the basis of a fundamental understanding of the bonding characteristics. This map is spanned by two coordinates that can be calculated just from the composition, and(More)