Learn More
A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has(More)
Molecular phylogenetic analyses have produced a plethora of controversial hypotheses regarding the patterns of diversification of non-bilaterian animals. To unravel the causes for the patterns of extreme inconsistencies at the base of the metazoan tree of life, we constructed a novel supermatrix containing 122 genes, enriched with non-bilaterian taxa.(More)
Despite expanding data sets and advances in phylogenomic methods, deep-level metazoan relationships remain highly controversial. Recent phylogenomic analyses depart from classical concepts in recovering ctenophores as the earliest branching metazoan taxon and propose a sister-group relationship between sponges and cnidarians (e.g., Dunn CW, Hejnol A, Matus(More)
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for gram-negative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on(More)
The phylogenetic position of the phylum Porifera (sponges) is near the base of the kingdom Metazoa. During the last few years, not only rRNA sequences but, more importantly, cDNA/genes that code for proteins have been isolated and characterized from sponges, in particular from the marine demosponge Geodia cydonium. The analysis of the deduced amino acid(More)
Polymetallic/ferromanganese nodules (Mn-nodules) have been assigned a huge economic potential since they contain considerable concentrations of manganese, copper, nickel, iron, and cobalt. It has been assumed that they are formed by, besides hydrogenous, nonbiogenic processes, biogenic processes based on metabolic processes driven by microorganisms. In the(More)
Two classes of sponges (animal phylum Porifera) possess a siliceous skeleton which is composed of spicules. Studying the optical fiber-mechanical properties of large spicules from hexactinellid sponges (> 5 cm) it was demonstrated that they are effective light-collecting optical fibers. Here, we report that the demosponge Suberites domuncula is provided(More)
Previously it was found that the expression of selected heat-shock proteins is upregulated in corals after exposure to elevated temperature. We published that HSPs are suitable markers in sponges to monitor the degree of environmental stress on these animals. In the present study the heat-shock proteins (HSPs) with a molecular weight of 90 kDa have been(More)
The 26,300-nucleotide sequence of the mitochondrial DNA (mtDNA) molecule of the demosponge Suberites domuncula (Olivi, 1792), the largest in size yet found in Porifera, has been determined. We describe the second hadromerid sponge mitochondrial genome that contains the same set of 41 genes as the hadromerid sponge Tethya actinia, including trnMe(cau),(More)