Matthias W. Seeger

Learn More
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence(More)
We present a framework for sparse Gaussian process (GP) methods which uses forward selection with criteria based on informationtheoretic principles, previously suggested for active learning. Our goal is not only to learn d–sparse predictors (which can be evaluated in O(d) rather than O(n), d n, n the number of training points), but also to perform training(More)
We present a method for the sparse greedy approximation of Bayesian Gaussian process regression, featuring a novel heuristic for very fast forward selection. Our method is essentially as fast as an equivalent one which selects the “support” patterns at random, yet it can outperform random selection on hard curve fitting tasks. More importantly, it leads to(More)
The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address problems of Bayesian optimal design (or experiment planning), for which(More)
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low norm in a reproducing kernel Hilbert space. We resolve the important open problem of deriving regret bounds for this setting,(More)
Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a(More)
We present a variational Bayesian method for model selection over families of kernels classifiers like Support Vector machines or Gaussian processes. The algorithm needs no user interaction and is able to adapt a large number of kernel parameters to given data without having to sacrifice training cases for validation. This opens the possibility to use(More)