Matthias Vraeghe

Learn More
We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04±0.16 and 1.14±0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current ν(e,μ,τ) (ν(e,μ,τ)) or charged-current ν(e)(More)
We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were(More)
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisí on Nacional de Energía Atómica, Agencia(More)
We present the results of a search for neutrino point sources using the Ice-Cube data collected between April 2008 and May 2011 with three partially completed configurations of the detector: the 40-, 59-and 79-string configurations. The live-time of this data set are 1,040 days. An unbinned maximum likelihood ratio test was used to search for an excess of(More)
Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy,(More)
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007–2010. These include parts of the 2005–2007 run and the 2009–2010 run for LIGO-Virgo, and IceCube's observation(More)
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Cen-a ter.(More)
IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed(More)
We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto(More)
IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector(More)