Learn More
—Sensor arrays are a key tool in the field of neuro-science for noninvasive recording of the activity of biological networks , such as dissociated neurons or neural tissue. A high-density sensor array complementary metal–oxide–semiconductor chip is presented with 16 K pixels, a frame rate of 2 kiloframes per second, and a pitch of 7.8 m 7.8 m for imaging of(More)
Solidly mounted film bulk acoustic resonators (FBAR) operating at 850 MHz in the shear vibration mode have been fabricated. C-axis inclined zinc oxide (ZnO) thin films realized by modified reactive magnetron sputtering were used: Coupling factors k2 of 1.7% and Q-factors of 312 were determined in air. Q-factors of 192 were measured in water, making these(More)
The throughput is an important parameter for label-free biosensors. Acoustic resonators like the quartz crystal microbalance have a low throughput because the number of sensors which can be used at the same time is limited. Here we present an array of 64 CMOS-integrated film bulk acoustic resonators. We compare the performance with surface plasmon resonance(More)
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known(More)
Nanomolar quantities of single-stranded DNA products ~100 nucleotides long can be detected in diluted 1% serum by surface plasmon resonance (SPR) and film bulk acoustic resonators (FBARs). We have used a novel FBAR sensor in parallel with SPR and obtained promising results with both the acoustic and the optical device. Oligonucleotides and a repellent(More)
Solidly mounted (SMR-type) thin film bulk acoustic resonators operating at 2.2, 4.1, and 8.0 GHz and with lateral extents from 30 to 500 microm were fabricated and their performance as mass sensors was evaluated theoretically as well as experimentally. It was found that increasing the frequency leads to a principally improved performance of these devices.(More)
  • 1