Learn More
In a three-dimensional (3-D) environment, sensory information is projected on a 2-D retina with the consequence that the visual system needs space information for accurately reconstructing the visual world. However, the 3-D environment is not accurately represented in the brain; in particular, the perception of distances in depth is imprecise. It has been(More)
Psychophysical experiments suggested a relative importance of a narrow band of spatial frequencies for recognition of face identity in humans. There exists, however, no conclusive evidence of why it is that such frequencies are preferred. To address this question, I examined the amplitude spectra of a large number of face images and observed that face(More)
Recent evidence suggests that the primate visual system generates representations for object surfaces (where we consider representations for the surface attribute brightness). Object recognition can be expected to perform robustly if those representations are invariant despite environmental changes (e.g., in illumination). In real-world scenes, it happens,(More)
The visual angle that is projected by an object (e.g. a ball) on the retina depends on the object's size and distance. Without further information, however, the visual angle is ambiguous with respect to size and distance, because equal visual angles can be obtained from a big ball at a longer distance and a smaller one at a correspondingly shorter distance.(More)
Numerous psychophysical experiments found that humans preferably rely on a narrow band of spatial frequencies for recognition of face identity. A recently conducted theoretical study by the author suggests that this frequency preference reflects an adaptation of the brain's face processing machinery to this specific stimulus class (i.e., faces). The purpose(More)
Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback(More)
Recent evidence suggests that object surfaces and their properties are represented at early stages in the visual system of primates. Most likely invariant surface properties are extracted to endow primates with robust object recognition capabilities. In real-world scenes, luminance gradients are often superimposed on surfaces. We argue that gradients should(More)
Filling-in models were successful in predicting psychophysical data for brightness perception. Nevertheless, their suitability for real-world image processing has never been examined. A unified architecture for both predicting psychophysical data and real-world image processing would constitute a powerful theory for early visual information processing. As a(More)