Matthias Rarey

Learn More
We present an automatic method for docking organic ligands into protein binding sites. The method can be used in the design process of specific protein ligands. It combines an appropriate model of the physico-chemical properties of the docked molecules with efficient methods for sampling the conformational space of the ligand. If the ligand is flexible, it(More)
We report on a test of FLEXX, a fully automatic docking tool for flexible ligands, on a highly diverse data set of 200 protein-ligand complexes from the Protein Data Bank. In total 46.5% of the complexes of the data set can be reproduced by a FLEXX docking solution at rank 1 with an rms deviation (RMSD) from the observed structure of less than 2 A. This(More)
We present a comprehensive study of the performance of fast scoring functions for library docking using the program FlexX as the docking engine. Four scoring functions, among them two recently developed knowledge-based potentials, are evaluated on seven target proteins whose binding sites represent a wide range of size, form, and polarity. The results of(More)
Side-chain or even backbone adjustments upon docking of different ligands to the same protein structure, a phenomenon known as induced fit, are frequently observed. Sometimes point mutations within the active site influence the ligand binding of proteins. Furthermore, for homology derived protein structures there are often ambiguities in side-chain(More)
MOTIVATION In this paper a new algorithmic approach is presented, which automatically generates structure diagrams of molecular complexes. A complex diagram contains the ligand, the amino acids of the protein interacting with the ligand and the hydrophilic interactions schematized as dashed lines between the corresponding atoms. The algorithm is based on a(More)
In this paper we present a new method for evaluating molecular similarity between small organic compounds. Instead of a linear representation like fingerprints, a more complex description, a feature tree, is calculated for a molecule. A feature tree represents hydrophobic fragments and functional groups of the molecule and the way these groups are linked(More)
MOTIVATION Many drug discovery projects fail because the underlying target is finally found to be undruggable. Progress in structure elucidation of proteins now opens up a route to automatic structure-based target assessment. DoGSiteScorer is a newly developed automatic tool combining pocket prediction, characterization and druggability estimation and is(More)
The two-dimensional representation of molecules is a popular communication medium in chemistry and the associated scientific fields. Computational methods for drawing small molecules with and without manual investigation are well-established and widely spread in terms of numerous software tools. Concerning the planar depiction of molecular complexes, there(More)
With the rapidly increasing amount of molecular biological data available, the computer-based analysis of molecular interactions becomes more and more feasible. Methods for computer-aided molecular docking have to include a reasonably accurate model of energy and must be able to deal with the combinatorial complexity incurred by the molecular flexibility of(More)
MOTIVATION Matching of chemical interacting groups is a common concept for docking and fragment placement algorithms in computer-aided drug design. These algorithms have been proven to be reliable and fast if at least a certain number of hydrogen bonds or salt bridges occur. However, the algorithms typically run into problems if hydrophobic fragments or(More)