Matthias Marti

Learn More
To establish infection in the host, malaria parasites export remodeling and virulence proteins into the erythrocyte. These proteins can traverse a series of membranes, including the parasite membrane, the parasitophorous vacuole membrane, and the erythrocyte membrane. We show that a conserved pentameric sequence plays a central role in protein export into(More)
The apicomplexan parasite Plasmodium falciparum causes the most severe form of malaria in humans. After invasion into erythrocytes, asexual parasite stages drastically alter their host cell and export remodeling and virulence proteins. Previously, we have reported identification and functional analysis of a short motif necessary for export of proteins out(More)
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it(More)
The high mortality of Plasmodium falciparum malaria is the result of a parasite ligand, PfEMP1 (P. falciparum) erythrocyte membrane protein 1), on the surface of infected red blood cells (IRBCs), which adheres to the vascular endothelium and causes the sequestration of IRBCs in the microvasculature. PfEMP1 transport to the IRBC surface involves Maurer's(More)
The protozoan parasite Giardia intestinalis belongs to one of the earliest diverged eukaryotic lineages. This is also reflected in a simple intracellular organization, as Giardia lacks common subcellular compartments such as mitochondria, peroxisomes, and apparently also a Golgi apparatus. During encystation, developmentally regulated formation of large(More)
A major goal of the worldwide malaria eradication program is the reduction and eventual elimination of malaria transmission. All currently available antimalarial compounds were discovered on the basis of their activity against the asexually reproducing red blood cell stages of the parasite, which are responsible for the morbidity and mortality of human(More)
A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding(More)
Plasmodium falciparum, the causative agent of malaria, relies on a sophisticated protein secretion system for host cell invasion and transformation. Although the parasite displays a secretory pathway similar to those of all eukaryotic organisms, a classical Golgi apparatus has never been described. We identified and characterised the putative Golgi matrix(More)
Residence within a customized vacuole is a highly successful strategy used by diverse intracellular microorganisms. The parasitophorous vacuole membrane (PVM) is the critical interface between Plasmodium parasites and their possibly hostile, yet ultimately sustaining, host cell environment. We show that torins, developed as ATP-competitive mammalian target(More)
Early diverged extant organisms, which may serve as convenient laboratory models to look for and study evolutionary ancient features of eukaryotic cell biology, are rare. The diplomonad Giardia intestinalis, a protozoan parasite known to cause diarrhoeal disease, has become an increasingly popular object of basic research in cell biology, not least because(More)