Learn More
Mesio-temporal lobe epilepsy (MTLE) is often accompanied by granule cell dispersion (GCD), a widening of the granule cell layer. The molecular determinants of GCD are poorly understood. Here, we used an animal model to study whether GCD results from an increased dentate neurogenesis associated with an abnormal migration of the newly generated granule cells.(More)
The reelin signaling pathway plays a crucial role during the development of laminated structures in the mammalian brain. Reelin, which is synthesized and secreted by Cajal-Retzius cells in the marginal zone of the neocortex and hippocampus, is proposed to act as a stop signal for migrating neurons. Here we show that a decreased expression of reelin mRNA by(More)
After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have(More)
To investigate the involvement of ciliary neurotropic factor (CNTF) in the postlesional response of motoneurons, we studied the activation of STAT3 signaling, the main signal transduction pathway of CNTF-like cytokines, in the facial nucleus of wildtype and CNTF-deficient mice following peripheral nerve transection. As shown by immunocytochemistry and(More)
In the neurogenic areas of the adult rodent brain, neural stem cells (NSCs) proliferate and produce new neurons throughout the lifetime. This requires a permanent pool of NSCs, the size of which needs to be tightly controlled. The gp130-associated cytokines ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) have been implicated in(More)
The negative feed-back interaction between horizontal cells (HCs) and cones in the cyprinid fish retina is thought to be mediated by horizontal cell spinules. These are "plastic" structures, largely absent from the dark-adapted retina and formed anew during light adaptation. We have previously shown that horizontal cell feed-back is similarly enhanced by(More)
To investigate a potential role of ciliary neurotrophic factor (CNTF) in transient global ischemia, we have studied the postischemic regulatory changes in the expression of CNTF and its receptor, the ligand-binding alpha-subunit (CNTFRalpha). Immunoblot analysis demonstrated CNTF levels were slightly upregulated already during the first day after ischemia(More)
In electrophysiological experiments involving intracellular recording from horizontal cells in the isolated retina of the roach, light adaptation of the retina has been shown to result in potentiation both of (1) the depolarizing component of biphasic chromaticity type S-potentials, and (2) the temporal frequency transfer functions of photopic luminosity(More)
BACKGROUND Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Growing evidence suggests an important role of cerebrospinal fluid (CSF) not only on neuroectodermal cells during brain development but also on the survival, proliferation and fate specification of NSCs in the adult brain. Existing in vitro(More)
Previous in vitro studies have convincingly demonstrated the involvement of diffusible factors in the regulation of photoreceptor development. We now provide evidence that ciliary neurotrophic factor (CNTF) represents one of these regulatory molecules. In low density monolayer cultures prepared from embryonic day 8 chick retina, photoreceptor development(More)