Matthias Kaup

Learn More
Human alpha-1-antitrypsin (A1AT) is a protease inhibitor that is involved in the protection of lungs from neutrophil elastase enzyme that drastically modifies tissue functioning. The glycoprotein consists of 394 amino acids and is N-glycosylated at Asn-46, Asn-83, and Asn-247. A1AT deficiency is currently treated with A1AT that is purified from human serum.(More)
Several members of the CLCA family of proteins, originally named chloride channels, calcium-activated, have been shown to modulate chloride conductance in various cell types via an unknown mechanism. Moreover, the human (h) hCLCA1 is thought to modulate the severity of disease in asthma and cystic fibrosis (CF) patients. All CLCA proteins are(More)
CLCA proteins (calcium-activated chloride channel regulators) have been linked to diseases involving secretory disorders, including cystic fibrosis (CF) and asthma. They have been shown to modulate endogenous chloride conductance, possibly by acting as metalloproteases. Based on the differential processing of the subunits after posttranslational cleavage,(More)
The transferrin receptor (TfR) is a transmembrane protein that mediates cellular uptake of iron. Although the serum concentration of the soluble TfR (sTfR) is altered in several diseases and used for diagnostic purposes, the identity and regulation of the shedding protease is unknown. In this study we quantified sTfR release from microsomal membranes and(More)
Glycosylation is a post-translational modification that is of paramount importance in the production of recombinant pharmaceuticals as most recombinantly produced therapeutics are N- and/or O-glycosylated. Being a cell-system-dependent process, it also varies with expression systems and growth conditions, which result in glycan microheterogeneity and(More)
Therapeutic efficacy of glycoproteins is affected by many factors, including molecular size and net charge; both are influenced by the presence and composition of glycan structures. Human alpha 1-antitrypsin (A1AT) was cloned and expressed in human embryonic kidney cells (HEK293) that are capable of mammalian glycosylation. Utilizing PCR-based site-directed(More)
The addition of N-glycans to clinically used proteins enhances their therapeutic features. Here we report the design of a novel peptide tag with an unnatural N-glycosylation site, which may increase the N-glycan content of generally any protein. The designed GlycoTags were attached to A1AT, EPO and AGP and constructs were expressed in HEK293 or CHO cells.(More)
All IgG-type antibodies are N-glycosylated in their Fc part at Asn-297. Typically, a fucose residue is attached to the first N-acetylglucosamine of these complex-type N-glycans. Antibodies lacking core fucosylation show a significantly enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and an increased efficacy of anti-tumor activity. In cases(More)
The ectodomain of the human transferrin receptor (TfR) is released as soluble TfR into the blood by cleavage within a stalk. The major cleavage site is located C-terminally of Arg-100; alternative cleavage sites are also present. Since the cleavage process is still unclear, we looked for proteases involved in TfR ectodomain release. In the supernatant of(More)
The human transferrin receptor (TfR) is shed by an integral metalloprotease releasing a soluble form (sTfR) into serum. The sTfR reflects the iron demand of the body and is postulated as a regulator of iron homeostasis via binding to the hereditary hemochromatosis protein HFE. To study the role of transferrin in this process, we investigated TfR shedding in(More)