Matthias Heinemann

Learn More
As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysis (NET analysis) is presented as a framework for(More)
Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and content, and use different terminologies to describe the same(More)
Although the network topology of metabolism is well known, understanding the principles that govern the distribution of fluxes through metabolism lags behind. Experimentally, these fluxes can be measured by (13)C-flux analysis, and there has been a long-standing interest in understanding this functional network operation from an evolutionary perspective. On(More)
The recognition of carbon sources and the regulatory adjustments to recognized changes are of particular importance for bacterial survival in fluctuating environments. Despite a thorough knowledge base of Escherichia coli's central metabolism and its regulation, fundamental aspects of the employed sensing and regulatory adjustment mechanisms remain unclear.(More)
Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the(More)
Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional--but often neglected--layer of complexity in gene expression. Here, we develop an experimental-computational approach to dissect specific and global(More)
In this study, full-genome DNA microarrays based on the sequence of Staphylococcus aureus N315 were used to compare the transcriptome of a clinical S. aureus strain with a normal phenotype to that of its isogenic mutant with a stable small-colony-variant (SCV) phenotype (hemB::ermB). In addition to standard statistical analyses, systems biology advances(More)
Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and(More)
Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine(More)