Learn More
Beyond its well-documented role in vesicle endocytosis, clathrin has also been implicated in the internalization of large particles such as viruses, pathogenic bacteria, and even latex beads. We have discovered an additional clathrin-dependent endocytic process that results in the internalization of large, double-membrane vesicles at lateral membranes of(More)
  • Kyaw Tha Paw U, Matthias Falk, +11 authors Anthony A. Matista
  • 2004
Eddy-covariance and biometeorological methods show significant net annual carbon uptake in an old-growth Douglas-fir 64 forest in southwestern Washington, USA. These results contrast with previous assumptions that old-growth forest ecosystems are in carbon equilibrium. The basis for differences between conventional biomass-based carbon sequestration(More)
To study the organization of gap junctions in living cells, the connexin isotypes alpha(1)(Cx43), beta(1)(Cx32) and beta(2)(Cx26) were tagged with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. The cellular fate of the tagged connexins was followed by high-resolution fluorescence deconvolution(More)
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we(More)
Certain membrane channels including acetylcholine receptors, gap junction (GJ) channels, and aquaporins arrange into large clusters in the plasma membrane (PM). However, how these channels are recruited to the clusters is unknown. To address this question, we have investigated delivery of GJ channel subunits (connexons) assembled from green fluorescent(More)
Double-membrane-spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains ( approximately 0.05-0.5 mum in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein(More)
Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated in the regulation of Cx43 channel gating by growth factors(More)
Direct intercellular communication mediated by gap junctions (GJs) is a hallmark of normal cell and tissue physiology. In addition, GJs significantly contribute to physical cell-cell adhesion. Clearly, these cellular functions require precise modulation. Typically, GJs represent arrays of hundreds to thousands of densely packed channels, each one assembled(More)
High-resolution, fluorescence deconvolution (DV) microscopy was implemented to obtain a detailed view of the organization and structural composition of gap junctions assembled from one or two different connexin isotypes in live and fixed cells. To visualize gap junctions, the structural protein components of gap junction channels, the connexin polypeptides(More)