Matthias F. Schneider

Learn More
The hydrological cycle and its response to environmental variability such as temperature changes is of prime importance for climate reconstruction and prediction. We retrieved deuterated water/water (HDO/H2O) abundances using spaceborne absorption spectroscopy, providing an almost global perspective on the near-surface distribution of water vapor(More)
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer(More)
Current fluctuations in pure lipid membranes have been shown to occur under the influence of transmembrane electric fields (electroporation) as well as a result from structural rearrangements of the lipid bilayer during phase transition (soft perforation). We demonstrate that the ion permeability during lipid phase transition exhibits the same qualitative(More)
von Willebrand factor (VWF), a protein present in our circulatory system, is necessary to stop bleeding under high shear-stress conditions as found in small blood vessels. The results presented here help unravel how an increase in hydrodynamic shear stress activates VWF's adhesion potential, leading to the counterintuitive phenomena of enhanced adsorption(More)
The large glycoprotein von Willebrand factor (VWF) is involved in the initial haemostatic reaction mediating the interaction between platelets and the injured vessel wall. It has been demonstrated that unusually large VWF (ULVWF) multimers after being released from endothelium are capable of developing elongated membrane-anchored strings that are(More)
Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the(More)
A newly developed UV-visible instrument for differential optical absorption spectroscopic measurements of atmospheric trace gases from balloon platforms is described. Direct solar light at daytime in the near-ultraviolet (320.6-422.6-nm) and the visible (417.6-670.7-nm) spectral ranges can be simultaneously analyzed for the atmospheric column abundances or(More)
Primary hemostasis and blood clotting is known to be influenced by the red blood cell volume fraction (hematocrit) in blood. Depressed or elevated levels of red blood cells can lead to vascular perfusion problems ranging from bleeding to thrombus formation. The early stage of hemostasis and thus blood clotting in all vessel sections from the arterial to the(More)
Within the framework of the NDSC (Network for the Detection of Stratospheric Change) ground-based FTIR solar absorption spectra have been routinely recorded at Izaña Observatory (28 • N, 16 • W) on Tenerife Island since March 1999. By analyzing the shape of the absorption lines, and their different temperature sensitivities, the vertical distribution of the(More)
1. Calcium transients were measured in fast-twitch rat skeletal muscle fibres stretched to 3.7-4.0 microns per sarcomere, and voltage clamped at a holding potential of -80 mV using the double-seal Vaseline gap technique. Resting calcium was monitored with fura-2 and the calcium transients were measured with antipyrylazo III. The rate of release of calcium(More)