Matthias Dantone

Learn More
Although facial feature detection from 2D images is a well-studied field, there is a lack of real-time methods that estimate feature points even on low quality images. Here we propose conditional regression forest for this task. While regression forest learn the relations between facial image patches and the location of feature points from the entire set of(More)
We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large(More)
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel,(More)
We introduce a complete pipeline for recognizing and classifying people’s clothing in natural scenes. This has several interesting applications, including e-commerce, event and activity recognition, online advertising, etc. The stages of the pipeline combine a number of state-of-the-art building blocks such as upper body detectors, various feature channels(More)
In this work, we address the problem of estimating 2d human pose from still images. Articulated body pose estimation is challenging due to the large variation in body poses and appearances of the different body parts. Recent methods that rely on the pictorial structure framework have shown to be very successful in solving this task. They model the body part(More)
Many desirable applications dealing with automatic face analysis rely on robust facial feature localization. While extensive research has been carried out on standard 2D imagery, recent technological advances made the acquisition of 3D data both accurate and affordable, opening new ways to more accurate and robust algorithms. We present a modelbased(More)
In this paper we present a fully automatic system for face augmentation on mobile devices. A user can point his mobile phone to a person and the system recognizes his or her face. A tracking algorithm overlays information about the identified person on the screen, thereby achieving an augmented reality effect. The tracker is running on the mobile client,(More)
Fashion is a major segment in e-commerce with growing importance and a steadily increasing number of products. Since manual annotation of apparel items is very tedious, the product databases need to be organized automatically, e.g. by image classification. Common image classification approaches are based on features engineered for general purposes which(More)
  • 1