Matthew Wohlgemuth Blair

Learn More
Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean(More)
Breeding for resistance to biotic and abiotic stresses of global importance in common bean is reviewed with emphasis on development and application of marker-assisted selection (MAS). The implementation and adoption of MAS in breeding for disease resistance is advanced compared to the implementation of MAS for insect and abiotic stress resistance.(More)
Cultivated common bean germplasm is especially diverse due to the parallel domestication of two genepools in the Mesoamerican and Andean centers of diversity and introgression between these gene pools. Classification into morphological races has helped to provide a framework for utilization of this cultivated germplasm. Meanwhile, core collections along(More)
Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries(More)
Microsatellites are simple, tandemly repeated di- to tetra-nucleotide sequence motifs flanked by unique sequences. They are valuable as genetic markers because they are co-dominant, detect high levels of allelic diversity, and are easily and economically assayed by the polymerase chain reaction (PCR). Results from screening a rice genomic library suggest(More)
An efficient technique for cloning DNA from silver-stained denaturing polyacrylamide gels was developed to allow the isolation of specific bands obtained from selective restriction fragment amplification (SRFA). This method proved as reliable as cloning radioactively labelled SRFA bands from the same gels. Rice DNA was used as a template, both with and(More)
Common bean (Phaseolus vulgaris L.) is a legume that is an important source of dietary protein in developing countries throughout the world. Utilizing the G19833 BAC library for P. vulgaris from Clemson University, 89,017 BAC-end sequences were generated giving 62,588,675 base pairs of genomic sequence covering approximately 9.54% of the genome. Analysis of(More)
Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci(More)
Microsatellite markers are useful genetic tools for a wide array of genomic analyses although their development is time-consuming and requires the identification of simple sequence repeats (SSRs) from genomic sequences. Screening of non-enriched, small-insert libraries is an effective method of SSR isolation that can give an unbiased picture of motif(More)
The Great Lakes region of Central Africa is a major producer of common beans in Africa. The region is known for high population density and small average farm size. The common bean represents the most important legume crop of the region, grown on over a third of the cultivated land area, and the per capita consumption is among the highest in the world for(More)