Matthew V Sheridan

  • Citations Per Year
Learn More
A dual working electrode technique for the in situ production and quantification of electrochemically or photoelectrochemically produced O2 is described. This technique, termed a collector-generator cell, utilizes a transparent fluorine doped tin oxide electrode to sense O2. This setup is specifically designed for detecting O2 in dye sensitized(More)
Tandem junction photoelectrochemical water-splitting devices, whereby two light absorbing electrodes targeting separate portions of the solar spectrum generate the voltage required to convert water to oxygen and hydrogen, enable much higher possible efficiencies than single absorber systems. We report here on the development of a tandem system consisting of(More)
The ligand 5-PO3H2-2,2':5',2″-terthiophene-5-trpy, T3 (trpy = 2,2':6',2″-terpyridine), was prepared and studied in aqueous solutions along with its metal complex assembly [Ru(T3)(bpy)(OH2)](2+) (T3-Ru-OH2, bpy = 2,2'-bipyridine). T3 contains a phosphonic acid group for anchoring to a TiO2 photoanode under aqueous conditions, a terthiophene fragment for(More)
Initial experiments on water oxidation by well-defined molecular catalysts were initiated with the goal of finding solutions to solar energy conversion. This account is a summary of research in this area by the T. J. Meyer research group. It begins with the design and characterization of the first catalyst, the blue Ru dimer, to current applications with(More)
A collector-generator (C-G) technique has been applied to determine the Faradaic efficiencies for electrocatalytic O2 production by the homogeneous water oxidation catalysts Ru(bda)(isoq)2 (1; bda = 2,2'-bipyridine and isoq = isoquinoline) and [Ru(tpy)(bpz)(OH2)](2+) (2; tpy = 2,2':6',2″-terpyridine and bpz = 2,2'-bipyrazine). This technique uses a(More)
Photoinduced electron injection, intra-assembly electron transfer, and back-electron transfer are investigated in a single-site molecular assembly formed by covalently linking a phosphonated terthiophene (T3) chromophore to a Ru(terpyridine)(bipyridine)(L)2+ (L = MeCN or H2O) water oxidation catalyst adsorbed onto a mesoporous metal-oxide (MOx) film.(More)
One with the surface: A method is presented for electrode modification with terminal alkynes and alkenes. Direct oxidation of these moieties leads to efficient grafting onto glassy carbon, gold, platinum, and indium tin oxide surfaces. Various ferrocenes and 5,10,15,20-(4-ethynylphenyl)porphyrin were attached in this way.
The electrochemical oxidation of ferrocenes having an H- or Li-terminated ethynyl group has been studied, especially as it relates to their covalent anchoring to carbon surfaces. The anodic oxidation of lithioethynylferrocene (1-Li) results in rapid loss of Li(+) and formation of the ethynyl-based radical FeCp(η(5)-C5H4)(C≡C), (1, Cp = η(5)-C5H5), which(More)
Interfacial charge transfer and core-shell structures play important roles in dye-sensitized photoelectrosynthesis cells (DSPEC) for water splitting into H2 and O2. An important element in the design of the photoanode in these devices is a core/shell structure which controls local electron transfer dynamics. Here, we introduce a new element, an internal(More)
Monodispersed mixtures of 6-nm Cu and Ag nanoparticles were prepared by electrochemical reduction on electrochemically polymerized poly-Fe(vbpy)3(PF6)2 film electrodes on glassy carbon. Conversion of the complex to poly-Fe(vbpy)2(CN)2 followed by surface binding of salts of the cations and electrochemical reduction gave a mixture of chemically distinct(More)