Learn More
Alzheimer's disease (AD) is characterized by decreased synapse density in hippocampus and neocortex, and synapse loss is the strongest anatomical correlate of the degree of clinical impairment. Although considerable evidence supports a causal role for the amyloid-beta protein (Abeta) in AD, a direct link between a specific form of Abeta and synapse loss has(More)
Recent studies support the hypothesis that soluble oligomers of amyloid beta-peptide (Abeta) rather than mature amyloid fibrils are the earliest effectors of synaptic compromise in Alzheimer's disease. We took advantage of an amyloid precursor protein-overexpressing cell line that secretes SDS-stable Abeta oligomers to search for inhibitors of the(More)
BACKGROUND MicroRNAs are a large new class of tiny regulatory RNAs found in nematodes, plants, insects and mammals. MicroRNAs are thought to act as post-transcriptional modulators of gene expression. In invertebrates microRNAs have been implicated as regulators of developmental timing, neuronal differentiation, cell proliferation, programmed cell death and(More)
The accumulation of amyloid beta-protein (Abeta) in brain regions serving memory and cognition is a central pathogenic feature of Alzheimer's disease (AD). We have shown that small soluble oligomers of human Abeta that are naturally secreted by cultured cells inhibit hippocampal long-term potentiation (LTP) in vitro and in vivo and transiently impair the(More)
Numerous studies have now shown that the amyloid beta-protein (Abeta), the principal component of cerebral plaques in Alzheimer disease, rapidly and potently inhibits certain forms of synaptic plasticity. The amyloid (or Abeta) hypothesis proposes that the continuous disruption of normal synaptic physiology by Abeta contributes to the development of(More)
Burgeoning evidence suggests that soluble oligomers of Abeta (amyloid beta-protein) are the earliest effectors of synaptic compromise in Alzheimer's disease. Whereas most other investigators have employed synthetic Abeta peptides, we have taken advantage of a beta-amyloid precursor protein-overexpressing cell line (referred to as 7PA2) that secretes(More)
Slabs of slow-release plastic (Elvax) containing NMDA or solvent were implanted over the rat colliculus beginning on postnatal day 8 (P8). Whole-cell patch clamping in the superficial superior collicular layers (sSCs) from P10 to P21 demonstrated a severe decrease in spontaneous EPSC frequency after chronic NMDA treatment. The decrease was not attributable(More)
Alzheimer's disease (AD) is characterized by decreased synapse density in hippocampus and neocortex, and synapse loss is the strongest anatomical correlate of the degree of clinical impairment. Although considerable evidence supports a causal role for the amyloid-␤ protein (A␤) in AD, a direct link between a specific form of A␤ and synapse loss has not been(More)
Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid beta (Abeta) known as ADDLs. In primary hippocampal cultures(More)
OBJECTIVE Despite progress in defining a pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, orally bioavailable compounds that prevent its effects on hippocampal synaptic plasticity and cognitive function have not yet emerged. A particularly attractive therapeutic strategy is to selectively neutralize small, soluble Abeta oligomers(More)