Matthew T Klug

Learn More
The ability to manipulate nanoscopic matter precisely is critical for the development of active nanosystems. Optical tweezers are excellent tools for transporting particles ranging in size from several micrometres to a few hundred nanometres. Manipulation of dielectric objects with much smaller diameters, however, requires stronger optical confinement and(More)
Sixteen distal radioulnar joints in eight normal volunteers (five females, three males) were evaluated by use of a special stress computed tomography technique. The mean palmar and dorsal translational motion was 2.2 millimeters +/- 1.6 and 1.0 millimeters +/- 0.9, respectively, for the combined group. The mean stress range was 3.3 millimeters +/- 1.4 for(More)
In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). Unbalanced LH at different wavelengths further reduces the achievable PCE. Here, we report a novel approach to broadband balanced LH and(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract: We demonstrate that tunable attractive (bonding) and repulsive(More)
A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10 5 are predicted in the lattice. A significant decrease of(More)
We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably(More)
A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase(More)
We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 10 5 at 980 nm and 5.7 × 10 5 at 1550 nm in undoped microrings. In erbium-and ytterbium-doped(More)
M13 bacteriophages are assembled via a covalent layer-by-layer process to form a highly nanoporous network capable of organizing nanoparticles and acting as a scaffold for templating metal-oxides. The morphological and optical properties of the film itself are presented as well as its ability to organize and disperse metal nanoparticles.
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. ABSTRACT Mesoporous semiconducting networks exhibit advantageous(More)