Matthew Schrag

Learn More
Neuroimaging with iron-sensitive MR sequences [gradient echo T2* and susceptibility-weighted imaging (SWI)] identifies small signal voids that are suspected brain microbleeds. Though the clinical significance of these lesions remains uncertain, their distribution and prevalence correlates with cerebral amyloid angiopathy (CAA), hypertension, smoking, and(More)
Epidemiological, cellular, and animal studies suggest that abnormalities in cholesterol metabolism may contribute to the etiology of Alzheimer's disease by increasing the generation of beta-amyloid (Abeta). However, the mechanism by which cholesterol increases Abeta levels is not fully understood. In the present study, we demonstrate that feeding rabbits(More)
A ligand-based model is reported that predicts the Ki values for cytochrome P450 2C9 (CYP2C9) inhibitors. This CoMFA model was used to predict the affinity of 14 structurally diverse compounds not in the training set and appears to be robust. The mean error of the predictions is 6 microM. The experimentally measured Ki values of the 14 compounds range from(More)
Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer's disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals(More)
Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome(More)
Western blot analysis is currently the major method utilized for quantitatively assessing histone global modifications. However, there is a growing need to develop a highly specific, accurate, and multisite quantitative method. Herein, we report a liquid chromatography-tandem mass spectrometry-multiple reaction monitoring method to simultaneously quantify(More)
Alzheimer's disease (AD) brain is marked by severe neuronal death which has been partly attributed to increased oxidative stress. The pathophysiology accounting for this free radical injury is not well-delineated at this point, but one hypothesis is that a derangement in transition metal metabolism contributes to the process. We tested the hypothesis that(More)
Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) are two common pathologies associated with β-amyloid (Aβ) accumulation and inflammation in the brain; neither is well understood. The objective of this study was to evaluate human post-mortem brains from AD subjects with purely parenchymal pathology, and those with concomitant CAA (and(More)
Reports that iron, zinc and copper homeostasis are in aberrant homeostasis are common for various neurodegenerative diseases, particularly for Huntington’s disease, Parkinson’s disease, and Alzheimer’s disease. Manipulating the levels of these elements in the brain through the application of chelators has been and continues to be tested therapeutically in(More)
One of the remaining challenges in Alzheimer's disease (AD) research is the establishment of biomarkers for early disease detection. As part of a prospective study spanning a period of five years, we have collected serial serum samples from cognitively normal, mild cognitively impaired (MCI), and mild AD participants, including same patient samples before(More)