Learn More
In the rodent primary visual cortex, maturation of GABA inhibitory circuitry is regulated by visual input and contributes to the onset and progression of ocular dominance (OD) plasticity. Cortical inhibitory circuitry consists of diverse groups of GABAergic interneurons, which display distinct physiological properties and connectivity patterns. Whether(More)
Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation(More)
In mammalian neocortex, the delicate balance of neural circuits is regulated by a rich repertoire of inhibitory control mechanisms mediated by diverse classes of GABAergic interneurons. A key step common to all GABAergic neurons is the synthesis of GABA, catalyzed by 2 isoforms of glutamic acid decarboxylases (GAD). Among these, GAD67 is the rate-limiting(More)
BACKGROUND Levels of cannabinoid 1 receptor (CB1R) messenger RNA (mRNA) and protein, which are expressed most heavily in the cholecystokinin class of γ-aminobutyric acid (GABA) neurons, are lower in the dorsolateral prefrontal cortex in schizophrenia, and the magnitude of these differences is strongly correlated with that for glutamic acid decarboxylase 67(More)
  • 1