Learn More
A matrix giving the traffic volumes between origin and destination in a network has tremendously potential utility for network capacity planning and management. Unfortunately, traffic matrices are generally unavailable in large operational IP networks. On the other hand, link load measurements are readily available in IP networks. In this paper, we propose(More)
—The study of network topology has attracted a great deal of attention in the last decade, but has been hampered by a lack of accurate data. Existing methods for measuring topology have flaws, and arguments about the importance of these have overshadowed the more interesting questions about network structure. The Internet Topology Zoo is a store of network(More)
The search for unifying properties of complex networks is popular, challenging, and important. For modeling approaches that focus on robustness and fragility as unifying concepts, the Internet is an especially attractive case study, mainly because its applications are ubiquitous and pervasive, and widely available exposition exists at every level of detail.(More)
Traffic matrices are required inputs for many IP network management tasks: for instance, capacity planning, traffic engineering and network reliability analysis. However, it is difficult to measure these matrices directly, and so there has been recent interest in inferring traffic matrices from link measurements and other more easily measured data.(More)
Many basic network engineering tasks (e.g., traffic engineering, capacity planning, anomaly detection) rely heavily on the availability and accuracy of traffic matrices. However, in practice it is challenging to reliably measure traffic matrices. Missing values are common. This observation brings us into the realm of compressive sensing, a generic technique(More)
An understanding of the topological structure of the Internet is needed for quite a number of networking tasks, e. g., making decisions about peering relationships, choice of upstream providers, inter-domain traffic engineering. One essential component of these tasks is the ability to predict routes in the Internet. However, the Internet is composed of a(More)
The ability to provide different Quality of Service (QoS) guarantees to traffic from different applications is a highly desired feature for many IP network operators, particularly for enterprise networks. Although various mechanisms exist for providing QoS in the network, QoS is yet to be widely deployed. We believe that a key factor holding back widespread(More)
Anomaly detection is a first and important step needed to respond to unexpected problems and to assure high performance and security in IP networks. We introduce a framework and a powerful class of algorithms for network anomography, the problem of inferring network-level anomalies from widely available data aggregates. The framework contains novel(More)
—Formally, the Internet inter-domain routing system is a collection of networks, their policies, peering relationships and organizational affiliations, and the addresses they advertize. It also includes components like Internet exchange points. By its very definition, each and every aspect of this system is impacted by BGP, the de-facto standard(More)
—Recent measurements of various types of network traffic have shown evidence consistent with long-range dependence and self-similarity. However, an alternative explanation for these measurements is non-station-arity. Standard estimators of LRD parameters such as the Hurst parameter H assume stationarity and are susceptible to bias when this assumption does(More)