Learn More
Tetrathiomolybdate is an anticopper drug with a unique mechanism of action. Tetrathiomolybdate complexes copper to protein and itself, rendering the copper unavailable for cellular uptake. It was originally developed for Wilson's disease, and is now being developed as an antiangiogenic agent for the treatment of cancer. Many angiogenic cytokines require(More)
In addition to its expression in stem cells and many cancers, telomerase activity is transiently induced in murine bleomycin (BLM)-induced pulmonary fibrosis with increased levels of telomerase transcriptase (TERT) expression, which is essential for fibrosis. To extend these observations to human chronic fibrotic lung disease, we investigated the expression(More)
Tetrathiomolybdate (TM), a drug developed for the treatment of Wilson's disease, produces an antiangiogenic effect by reducing systemic copper levels. Several angiogenic cytokines appear to depend on normal levels of copper for activity. In both animal tumor models and in cancer patients, TM therapy has proved effective in inhibiting the growth of tumors.(More)
The bone morphogenetic proteins (BMPs) profoundly affect embryonic development, differentiation and disease. BMP signaling is suppressed by cysteine-rich domain proteins, such as chordin, that sequester ligands from the BMP receptor. We describe a novel protein, KCP, with 18 cysteine-rich domains. Unlike chordin, KCP enhances BMP signaling in a paracrine(More)
Found in inflammatory zone (FIZZ)1, also known as resistin-like molecule alpha, belongs to a novel class of cysteine-rich secreted protein family, named FIZZ/resistin-like molecule, with unique tissue expression patterns. FIZZ1 is induced in alveolar type II epithelial cells (AECs) in bleomycin (BLM)-induced lung fibrosis, and found to induce myofibroblast(More)
In general, there are two types of animal models: natural and experimental. Because there are no natural models for pulmonary fibrosis, an experimental model that reproduces key aspects of the human disease would be useful for the study of this form of lung disease, the natural history of which is not always known. To date, a variety of animal models have(More)
In addition to its well-known expression in the germline and in cells of certain cancers, telomerase activity is induced in lung fibrosis, although its role in this process is unknown. To identify the pathogenetic importance of telomerase in lung fibrosis, we examined the effects of telomerase reverse transcriptase (TERT) deficiency in a murine model of(More)
Recent evidence suggests that bone marrow-derived fibroblasts are involved in airway remodeling in asthma, but the role and mechanism of recruitment of these fibroblasts remains unclear. Stem cell factor (SCF), a key factor in the propagation of hematopoietic stem cells, is important in the process of airway remodeling as well. To test the hypothesis that(More)
Notch1 is an evolutionarily conserved receptor that regulates cell fate, including such events as differentiation, proliferation, and apoptosis. Myofibroblast differentiation is a key feature of lung fibrosis. Found in inflammatory zone 1 (FIZZ1) has direct fibrogenic properties because of its ability to induce myofibroblast differentiation. However, the(More)
FIZZ (found in inflammatory zone) 1, a member of a cysteine-rich secreted protein family, is highly induced in lung allergic inflammation and bleomycin induced lung fibrosis, and primarily expressed by airway and type II alveolar epithelial cells. This novel mediator is known to stimulate α-smooth muscle actin and collagen expression in lung fibroblasts.(More)