Matthew R Hartings

Learn More
We report a quantitative theoretical analysis of long-range electron transfer through sensitizer wires bound in the active-site channel of cytochrome P450cam. Each sensitizer wire consists of a substrate group with high binding affinity for the enzyme active site connected to a ruthenium-diimine through a bridging aliphatic or aromatic chain. Experiments(More)
We present an evolutionary method for finding the low-energy conformations of polypeptides. The application, called FOLDAWAY,is based on a generic framework and uses several evolutionary operators as well as local optimization to navigate the complex energy landscape of polypeptides. It maintains two complementary representations of the structures and uses(More)
The conformations of unsolvated Ac-K(AGG)(5)+H(+) and Ac-(AGG)(5)K+H(+) peptides (Ac = acetyl, A = alanine, G = glycine, and K = lysine) have been examined by ion mobility measurements over a wide temperature range (150-410 K). The Ac-K(AGG)(5)+H(+) peptide remains a globule (a compact, roughly spherical structure) over the entire temperature range, while(More)
Ion mobility measurements and molecular dynamics simulations were performed for unsolvated A4G7A4 + H+ and Ac-A4G7A4 + H+ (Ac = acetyl, A = alanine, G = glycine) peptides. As expected, A4G7A4 + H+ adopts a globular conformation (a compact, random-looking, three-dimensional structure) over the entire temperature range examined (100-410 K). Ac-A4G7A4 + H+ on(More)
A technique was developed for preparing a novel material that consists of gold nanoparticles trapped within a fiber of unfolded proteins. These fibers are made in an aqueous solution that contains HAuCl4 and the protein, bovine serum albumin (BSA). By changing the ratio of gold to BSA in solution, two different types of outcomes are observed. At lower gold(More)
Metalloenzymes and electron transfer proteins influence the electrochemical properties of metal cofactors by controlling the second-sphere environment of the protein active site. Properties that tune this environment include the dielectric constant, templated charge structure, van der Waals interactions, and hydrogen bonds. By systematically varying the(More)
Ion mobility measurements have been used to examine the conformations present for unsolvated Ac-(AG)(7)A+H(+) and (AG)(7)A+H(+) peptides (Ac = acetyl, A = alanine, and G = glycine) over a broad temperature range (100-410 K). The results are compared to those recently reported for Ac-A(4)G(7)A(4)+H(+) and A(4)G(7)A(4)+H(+), which have the same compositions(More)
  • 1