Matthew R. Begley

Learn More
This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate(More)
We present an experimental study of the energetics of repulsion between end-grafted fragments of double-stranded DNA. The absorption isotherm of thiolated DNA fragments has been measured as a function of DNA chain length as well as the salinity of the surrounding solution. The results are consistent with a simple excluded-volume model of the interaction(More)
Combining DNA and superparamagnetic beads in a rotating magnetic field produces multiparticle aggregates that are visually striking, enabling label-free optical detection and quantification of DNA at levels in the picogram per microliter range. DNA in biological samples can be quantified directly by simple analysis of optical images of microfluidic wells(More)
Neural electrodes are essential tools for the study of the nervous system and related diseases. Low electrode impedance is a figure of merit for sensitive detection of neural electrical activity and numerous studies have aimed to reduce impedance. Unfortunately, most of these efforts have been tethered by a combination of poor functional coating adhesion,(More)
Nanoporous gold (np-Au) has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and(More)
Simulation of the nonlinear mechanical response of materials with explicit representation of microstructural features is extremely challenging. These models typically involve a very large number of degrees of freedom, and are prone to convergence difficulties when searching for roots to nonlinear equilibrium equations. We focus on an idealized material(More)
Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective(More)
Stiff ceramic platelets (or bricks) that are aligned and bonded to a second ductile phase with low volume fraction (mortar) are a promising pathway to produce stiff, high-toughness composites. For certain ranges of constituent properties, including those of some synthetic analogs to nacre, one can demonstrate that the deformation is dominated by relative(More)
The mechanical behavior of thin elastic _lms deposited onto structural alloys plays a critical role in determining _lm durability[ This paper presents analysis of an impression experiment designed to evaluate some of the relevant properties of these _lms[ The modeling provides quantitative strain information which can be used to estimate the fracture(More)
This paper presents a simple and cost-effective polyester toner microchip fabricated with laser print and cut lithography (PCL) to use with a battery-powered centrifugal platform for fluid handling. The combination of the PCL microfluidic disc and centrifugal platform: (1) allows parallel aliquoting of two different reagents of four different volumes(More)