Learn More
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for(More)
Epilepsy affects more than 1% of the world's population. Responsive neurostimulation is emerging as an alternative therapy for the 30% of the epileptic patient population that does not benefit from pharmacological treatment. Efficient seizure detection algorithms will enable closed-loop epilepsy prostheses by stimulating the epileptogenic focus within an(More)
Current antidepressant therapies do not effectively control or cure depressive symptoms. Pharmaceutical therapies altogether fail to address an estimated 4 million Americans who suffer from a recurrent and severe treatment-resistant form of depression known as refractory major depressive disorder. Subjective diagnostic schemes, differing manifestations of(More)
Approximately 30% of individuals with epilepsy have refractory seizures that cannot be controlled by current pharmacological treatment measures. For such patients, responsive neurostimulation prior to a seizure may lead to greater efficacy when compared with current treatments. In this paper, we present a real-time adaptive Wiener prediction algorithm(More)
Preliminary results from animal and clinical studies demonstrate that electrical stimulation of brain structures can reduce seizure frequency in patients with refractory epilepsy. Since most researchers derive stimulation parameters by trial and error, it is unclear what stimulation frequency, amplitude and duration constitutes a set of optimal stimulation(More)
Neural recording and stimulation have great clinical potential. Long-term neural recording remains a challenge, however, as implantable electrodes eventually fail due to the adverse effects of the host tissue response to the indwelling implant. Astrocytes and microglia attempt to engulf the electrode, increasing the electrical impedance between the(More)
We demonstrate an alternative method of designing electrical stimuli-termed burst modulation--for producing different patterns of nerve fiber recruitment. By delivering electrical charge in bursts of "pulsons"--miniature pulses-instead of as long continuous pulses, our method can optimize the waveform for stimulation efficiency and fiber selectivity. In our(More)
Electrical vagus nerve stimulation is a treatment alternative for many epileptic and depressed patients whose symptoms are not well managed with pharmaceutical therapy. However, the fixed stimulus, open loop dosing mechanism limits its efficacy and precludes major advances in the quality of therapy. A real-time, responsive form of vagus nerve stimulation is(More)
The use of focused ultrasonic waves to modulate neural structures has gained recent interest due to its potential in treating neurological disorders non-invasively. While several papers have focused on the use of ultrasound neuromodulation on peripheral nerves, none of these studies have been performed on the vagus nerve. We present preliminary observations(More)
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for(More)