Matthew P. Pando

Learn More
A group of specialized genes has been defined to govern the molecular mechanisms controlling the circadian clock in mammals. Their expression and the interactions among their products dictate circadian rhythmicity. Three genes homologous to Drosophila period exist in the mouse and are thought to be major players in the biological clock. Here we present the(More)
The mammalian circadian system contains both central and peripheral oscillators. To understand the communication pathways between them, we have studied the rhythmic behavior of mouse embryo fibroblasts (MEFs) surgically implanted in mice of different genotypes. MEFs from Per1(-/-) mice have a much shorter period in culture than do tissues in the intact(More)
The signaling pathways that couple light photoreception to entrainment of the circadian clock have yet to be deciphered. Two prominent groups of candidates for the circadian photoreceptors are opsins (e.g., melanopsin) and blue-light photoreceptors (e.g., cryptochromes). We have previously showed that the zebrafish is an ideal model organism in which to(More)
Chemotherapeutic agents simultaneously induce transcription factors p53 and NF B. p53 induction can activate an apoptotic program, and resistance to chemotherapy correlates with the loss of a functional p53 pathway. By contrast, NF B prevents apoptosis in response to chemotherapeutic agents. We have analyzed the p53 response in IKK1/2 / MEFs, which lack(More)
The mammalian circadian system is critical for the proper regulation of behavioral and physiological rhythms. The central oscillator, or master clock, is located in the hypothalamic suprachiasmatic nucleus (SCN). Additional circadian clocks are dispersed throughout most organs and tissues of an animal. The most prominent stimuli capable of synchronizing(More)
Chemotherapeutic agents simultaneously induce transcription factors p53 and NFkappaB. p53 induction can activate an apoptotic program, and resistance to chemotherapy correlates with the loss of a functional p53 pathway. By contrast, NFkappaB prevents apoptosis in response to chemotherapeutic agents. We have analyzed the p53 response in IKK1/2(-/-) MEFs,(More)
The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary(More)
Fanconi anemia (FA), a genetic disorder predisposing to aplastic anemia and cancer, is characterized by hypersensitivity to DNA-damaging agents and oxidative stress. Five of the cloned FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG) appear to be involved in a common functional pathway that is required for the monoubiquitination of a sixth gene product,(More)
Most organisms display oscillations of approximately 24 hours in their physiology. In higher organisms, these circadian oscillations in biochemical and physiological processes ultimately control complex behavioral rhythms that allow an organism to thrive in its natural habitat. Daily and seasonal light cycles are mainly responsible for keeping the circadian(More)
The vertebrate circadian clock was thought to be highly localized to specific anatomical structures: the mammalian suprachiasmatic nucleus (SCN), and the retina and pineal gland in lower vertebrates. However, recent findings in the zebrafish, rat and in cultured cells have suggested that the vertebrate circadian timing system may in fact be highly(More)