Matthew P. Burnham

Learn More
BACKGROUND AND PURPOSE The small and intermediate conductance, Ca2+-sensitive K+ channels (SK(Ca) and IK(Ca), respectively) which are pivotal in the EDHF pathway may be differentially activated. The importance of caveolae in the functioning of IK(Ca) and SK(Ca) channels was investigated. EXPERIMENTAL APPROACH The effect of the caveolae-disrupting agent(More)
1. Experiments were performed to elucidate the mechanism by which alterations of extracellular pH (pH(o)) change membrane potential (E(M)) in rat mesenteric and pulmonary arteries. 2. Changing pH(o) from 7.4 to 6.4 or 8.4 produced a depolarisation or hyperpolarisation, respectively, in mesenteric and pulmonary arteries. Anandamide (10 microm) or bupivacaine(More)
1. Mechanisms underlying K(+)-induced hyperpolarizations in the presence and absence of phenylephrine were investigated in endothelium-denuded rat mesenteric arteries (for all mean values, n=4). 2. Myocyte resting membrane potential (m.p.) was -58.8+/-0.8 mV. Application of 5 mM KCl produced similar hyperpolarizations in the absence (17.6+/-0.7 mV) or(More)
1. This study characterizes the K(+) channel(s) underlying charybdotoxin-sensitive hyperpolarization of porcine coronary artery endothelium. 2. Two forms of current-voltage (I/V) relationship were evident in whole-cell patch-clamp recordings of freshly-isolated endothelial cells. In both cell types, iberiotoxin (100 nM) inhibited a current active only at(More)
1. The apamin-sensitive small-conductance Ca(2+)-activated K(+) channel (SK(Ca)) was characterized in porcine coronary arteries. 2. In intact arteries, 100 nM substance P and 600 microM 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial cell hyperpolarizations (27.8 +/- 0.8 mV and 24.1 +/- 1.0 mV, respectively). Charybdotoxin (100 nM) abolished the(More)
The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4(More)
We have examined the relative contributions of small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK(Ca) and IK(Ca)) to the endothelium-derived hyperpolarizing factor (EDHF) pathway response in small mesenteric arteries of Zucker Diabetic Fatty (ZDF) rats, before and after the development of Type II diabetes, together with Lean controls.(More)
In intact mesenteric arteries, increasing [K(+)]o by 5 mM hyperpolarized both endothelial and smooth muscle cells. Subsequent exposure to 10 microM phenylephrine depolarized both cell types which were then repolarized by a 5 mM increase in [K(+)]o. In endothelium-denuded vessels, increasing [K(+)]o by 5 mM hyperpolarized the smooth muscle but K(+) had no(More)
The aims of the study were to compare the myogenic and structural properties of middle cerebral arteries (MCAs) from the stroke-prone spontaneously hypertensive rat (SHRSP) with MCAs from the spontaneously hypertensive rat (SHR) before stroke development in SHRSP. Rats were fed a "Japanese" diet (low-protein rat chow and 1% NaCl in drinking water) for 8 wk,(More)
Although it is well established that diabetes impairs endothelium-dependent vasodilation, including those pathways involving vascular myocyte large-conductance Ca(2+)-activated K(+) channels (BK(Ca)), little is known about the effects of diabetes on BK(Ca) activation as an intrinsic response to contractile stimulation. We have investigated this mechanism in(More)