Matthew P Burnham

Learn More
1. Mechanisms underlying K(+)-induced hyperpolarizations in the presence and absence of phenylephrine were investigated in endothelium-denuded rat mesenteric arteries (for all mean values, n=4). 2. Myocyte resting membrane potential (m.p.) was -58.8+/-0.8 mV. Application of 5 mM KCl produced similar hyperpolarizations in the absence (17.6+/-0.7 mV) or(More)
1. This study characterizes the K(+) channel(s) underlying charybdotoxin-sensitive hyperpolarization of porcine coronary artery endothelium. 2. Two forms of current-voltage (I/V) relationship were evident in whole-cell patch-clamp recordings of freshly-isolated endothelial cells. In both cell types, iberiotoxin (100 nM) inhibited a current active only at(More)
Evaluating whether a new medication prolongs QT intervals is a critical safety activity that is conducted in a sensitive animal model during non-clinical drug development. The importance of QT liability detection has been reinforced by non-clinical [International Conference on Harmonization (ICH) S7B] and clinical (ICH E14) regulatory guidance from the(More)
  • 1