Matthew N Rasband

Learn More
Na(+) channel clustering at nodes of Ranvier in the developing rat optic nerve was analyzed to determine mechanisms of localization, including the possible requirement for glial contact in vivo. Immunofluorescence labeling for myelin-associated glycoprotein and for the protein Caspr, a component of axoglial junctions, indicated that oligodendrocytes were(More)
Voltage-dependent sodium channels are uniformly distributed along unmyelinated axons, but are highly concentrated at nodes of Ranvier in myelinated axons. Here, we show that this pattern is associated with differential localization of distinct sodium channel alpha subunits to the unmyelinated and myelinated zones of the same retinal ganglion cell axons. In(More)
Action potential initiation and propagation requires clustered Na(+) (voltage-gated Na(+) [Nav]) channels at axon initial segments (AIS) and nodes of Ranvier. In addition to ion channels, these domains are characterized by cell adhesion molecules (CAMs; neurofascin-186 [NF-186] and neuron glia-related CAM [NrCAM]), cytoskeletal proteins (ankyrinG and betaIV(More)
The axon initial segment (AIS) functions as both a physiological and physical bridge between somatodendritic and axonal domains. Given its unique molecular composition, location, and physiology, the AIS is thought to maintain neuronal polarity. To identify the molecular basis of this AIS property, we used adenovirus-mediated RNA interference to silence AIS(More)
Ion channel clustering at the axon initial segment (AIS) and nodes of Ranvier has been suggested to be a key evolutionary innovation that enabled the development of the complex vertebrate nervous system. This innovation epitomizes a signature feature of neurons, namely polarity. The mechanisms that establish neuronal polarity, channel clustering and(More)
The K+ channel alpha-subunits Kv1.1 and Kv1.2 and the cytoplasmic beta-subunit Kvbeta2 were detected by immunofluorescence microscopy and found to be colocalized at juxtaparanodes in normal adult rat sciatic nerve. After demyelination by intraneural injection of lysolecithin, and during remyelination, the subcellular distributions of Kv1.1, Kv1.2, and(More)
Differential expression of ion channels contributes functional diversity to sensory neuron signaling. We find nerve injury induced by the Chung model of neuropathic pain leads to striking reductions in voltage-gated K(+) (Kv) channel subunit expression in dorsal root ganglia (DRG) neurons, suggesting a potential molecular mechanism for hyperexcitability of(More)
Many factors contribute to nervous system dysfunction and failure to regenerate after injury or disease. Here, we describe a previously unrecognized mechanism for nervous system injury. We show that neuronal injury causes rapid, irreversible, and preferential proteolysis of the axon initial segment (AIS) cytoskeleton independently of cell death or axon(More)
Tenascin-R (TN-R), an extracellular matrix glycoprotein of the CNS, localizes to nodes of Ranvier and perineuronal nets and interacts in vitro with other extracellular matrix components and recognition molecules of the immunoglobulin superfamily. To characterize the functional roles of TN-R in vivo, we have generated mice deficient for TN-R by homologous(More)
Axonal injury is considered the major cause of disability in patients with multiple sclerosis (MS), but the underlying effector mechanisms are poorly understood. Starting with a proteomics-based approach, we identified neurofascin-specific autoantibodies in patients with MS. These autoantibodies recognize the native form of the extracellular domains of both(More)