Learn More
Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during(More)
Mouse and rat skeletal muscles are capable of a regulatory volume increase (RVI) after they shrink (volume loss resultant from exposure to solutions of increased osmolarity) and that this RVI occurs mainly by a Na-K-Cl-Cotransporter (NKCC)-dependent mechanism. With high-intensity exercise, increased extracellular osmolarity is accompanied by large increases(More)
  • 1