Matthew L. Clark

Learn More
We investigated the utility of high spectral and spatial resolution imagery for the automated species-level classification of individual tree crowns (ITCs) in a tropical rain forest (TRF). Laboratory spectrometer and airborne reflectance spectra (161 bands, 437–2434 nm) were acquired from seven species of emergent trees. Analyses focused on leaf-, pixeland(More)
Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in(More)
Forest cover change directly affects biodiversity, the global carbon budget, and ecosystem function. Within Latin American and the Caribbean region (LAC), many studies have documented extensive deforestation, but there are also many local studies reporting forest recovery. These contrasting dynamics have been largely attributed to demographic and(More)
Understanding the current status of the world’s tropical rain forests (TRF) can be greatly advanced by global coverage of remotely sensed data at the scale of individual tree crowns. In 1999 the IKONOS satellite began offering worldwide 1-m panchromatic and 4-m multispectral data. Here we show that these data can be used to address diverse aspects of forest(More)
This study explores a method to classify seven tropical rainforest tree species from full-range (400–2,500 nm) hyperspectral data acquired at tissue (leaf and bark), pixel and crown scales using laboratory and airborne sensors. Metrics that respond to vegetation chemistry and structure were derived using narrowband indices, derivativeand absorptionbased(More)
Web-based applications that integrate geospatial information, or the geoweb, offer exciting opportunities for remote sensing science. One such application is a Web-based system for automating the collection of reference data for producing and verifying the accuracy of land-use/land-cover (LULC) maps derived from satellite imagery. Here we describe the(More)
Understanding the spatial pattern of ecosystem services is important for effective environmental policy and decision-making. In this study, we use a geospatial decision-support tool (Marxan) to identify conservation priorities for habitat and a suite of ecosystem services (storage carbon, soil retention and water yield) in the Upper Paraná Atlantic Forest(More)
Forest transitions (FT) have been observed in many developed countries and more recently in the developing world. However, our knowledge of FT from tropical regions is mostly derived from case studies from within a particular country, making it difficult to generalize findings across larger regions. Here we overcome these difficulties by conducting a recent(More)
BACKGROUND Monitoring land change at multiple spatial scales is essential for identifying hotspots of change, and for developing and implementing policies for conserving biodiversity and habitats. In the high diversity country of Colombia, these types of analyses are difficult because there is no consistent wall-to-wall, multi-temporal dataset for land-use(More)