Matthew K. Tighe

Learn More
One key constraint to further understanding plant root development is the inability to observe root growth in situ due to the opaque nature of soil. Of the present non-destructive techniques, computed tomography (CT) is best able to capture the complexities of the edaphic environment. This study compared the accuracy and impact of X-ray CT measurement of in(More)
Despite the recognised importance of root architecture to plant productivity, our ability to easily observe and quantify root responses to stresses in soil at appropriate mechanistic resolution, remains poor. In this study we examine the impact of P bands on root architecture in heterogeneous soil, trialling a rapid non-destructive analysis technique. We(More)
Much of our understanding of plant root decomposition and related carbon cycling come from mass loss rates calculated from roots buried in litter bags. However, this may not reflect what actually happens in the soil, where the interactions between root and soil structure presents a more complex physico-chemical environment compared to organic matter(More)
The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation(More)
  • 1