Learn More
High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to(More)
This article reviews current knowledge of starch metabolism in higher plants, and focuses on the control and regulation of the biosynthetic and degradative pathways. The major elements comprising the synthetic and degradative pathways in plastids are discussed, and show that, despite present knowledge of the core reactions within each pathway, understanding(More)
Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with gamma-(32)P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in(More)
The dissection of gene-trait associations and its translation into practice through plant breeding is a central aspect of modern plant biology. The identification of genes underlying simply inherited traits has been very successful. However, the identification of gene-trait associations for complex (multi-genic) traits in crop plants with large, often(More)
The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression(More)
The endosperm of hexaploid wheat (Triticum aestivum [L.]) was shown to contain a high molecular weight starch synthase (SS) analogous to the product of the maize du1 gene, starch synthase III (SSIII; DU1). cDNA and genomic DNA sequences encoding wheat SSIII were isolated and characterized. The wheat SSIII cDNA is 5,346 bp long and contains an open reading(More)
The roles of starch branching enzyme (SBE, EC IIa and SBE IIb in defining the structure of amylose and amylopectin in barley (Hordeum vulgare) endosperm were examined. Barley lines with low expression of SBE IIa or SBE IIb, and with the low expression of both isoforms were generated through RNA-mediated silencing technology. These lines enabled(More)
The sugary-2 mutation in maize (Zea mays L.) is a result of the loss of catalytic activity of the endosperm-specific SS (starch synthase) IIa isoform causing major alterations to amylopectin architecture. The present study reports a biochemical and molecular analysis of an allelic variant of the sugary-2 mutation expressing a catalytically inactive form of(More)
Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested(More)
Himalaya 292 (Hordeum vulgare var. Himalaya 292) is a novel hull-less barley variety lacking activity of a key enzyme of starch synthesis giving a grain containing less total starch, more amylose and higher total dietary fibre. Animal trials have shown that Himalaya 292 contains more resistant starch and has greater positive impact on biomarkers of(More)