Matthew J. Turk

Learn More
The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we(More)
As scientists' needs for computational techniques and tools grow, they cease to be supportable by software developed in isolation. In many cases, these needs are being met by communities of practice, where software is developed by domain scientists to reach pragmatic goals and satisfy distinct and enumerable scientific goals. yt is a visualization and(More)
As scientists' needs for computational techniques and tools grow, they cease to be supportable by software developed in isolation. In many cases, these needs are being met by communities of practice, where software is developed by domain scientists to reach pragmatic goals and satisfy distinct and enumerable scientific goals. We present techniques that have(More)
Previous high-resolution cosmological simulations predicted that the first stars to appear in the early universe were very massive and formed in isolation. Here, we discuss a cosmological simulation in which the central 50 M(o) (where M(o) is the mass of the Sun) clump breaks up into two cores having a mass ratio of two to one, with one fragment collapsing(More)
1217 PERSPECTIVES compared with obtaining metallicity measurements of diffuse gas. Stars emit enormous amounts of light and can be seen with large telescopes, whereas faint diffuse gas barely emits any light and is therefore almost impossible to view. A clever technique to probe the gas metal-licity over the age of the universe is to use bright quasars as(More)
The transformation of atomic hydrogen to molecular hydrogen through three-body reactions is a crucial stage in the collapse of primordial, metal-free halos, where the first generation of stars (Population III stars) in the Universe are formed. However, in the published literature, the rate coefficient for this reaction is uncertain by nearly an order of(More)
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model.(More)
  • 1